Проведем диаметр и обозначим его AC . Проведем хорду и обозначим её BN. Точку пересечения хорды с диаметром обозначим буквой O.Соединим точку В хорды с концами диаметра А и В. У нас получилось два прямоугольных треугольника. AOB. и BOC. Примем отрезок АО =9см, а отрезок ОС=x. Тогда АС =9+x(это диаметр). Из треугольника АВС находим. ВС^2=АС^2-АВ^2: Из треугольника. ВОС ВС^2=ОВ^2+ОС^2 : Левые части равны значит АС^2 -АВ^2=ОВ^2+ОС^2. Подставляя значения получаем: (9+x)^2-(9^2+12^2)=12^2+x^2; 81+18x+x^2- 81 -144=144+x^2: 18x=288, x=16. AC =9+16=25. Радиус равняется АС/2=25/2 =12,5(см) ответ:12,5.
ТОЛЬКО поставь свои знчения угол вда равен углу двс (так как вс и ад - параллельны)
сторона вс треугольника всд относится к стороне вд треугольника авд как сторона вд треугольника всд относится к стороне ад треугольника авд
треугольники подобны так как подобны попарно две стороны и одинаковы углы между ними
2)углы авс акс асд равны между собой и равны <1 так как опираются на одну дугу окружности углы ксв кав кса ква равны между собой и равны <2 так как опираются на одну дугу окружности и так как см - биссектриса угол кма равен 180 - <1 - <2 угол СМД равен 180 - угол кма = <1+<2 угол КСД равен = <1+<2 треугольник КСД - равнобедренный так как два угла равны
искомая сторона СД = МД = х по свойству секущей АД * ВД = СД*СД АД = х-7 ВД = х+9 (х-7)(х+9)=х^2 х^2+2x-63=х^2 x=63/2=31,5 - искомое расстояние
угол вда равен углу двс (так как вс и ад - параллельны)
сторона вс треугольника всд относится к стороне вд треугольника авд как
сторона вд треугольника всд относится к стороне ад треугольника авд
треугольники подобны так как подобны попарно две стороны и одинаковы углы между ними
2)углы авс акс асд равны между собой и равны <1 так как опираются на одну дугу окружности
углы ксв кав кса ква равны между собой и равны <2 так как опираются на одну дугу окружности и так как см - биссектриса
угол кма равен 180 - <1 - <2
угол СМД равен 180 - угол кма = <1+<2
угол КСД равен = <1+<2
треугольник КСД - равнобедренный так как два угла равны
искомая сторона СД = МД = х
по свойству секущей АД * ВД = СД*СД
АД = х-7
ВД = х+9
(х-7)(х+9)=х^2
х^2+2x-63=х^2
x=63/2=31,5 - искомое расстояние