Знайти проекцію точки M(3;-2;0) на площину 3x-2y+z+1=0.
Для этого надо найти точку пересечения перпендикуляра из точки М к заданной плоскости с самой плоскостью.
Нормальный вектор этой плоскости равен (3; -2; 1) и является направляющим вектором перпендикуляра к плоскости.
Получаем уравнение перпендикуляра из точки М(3; -2; 0).
((x – 3)/3 = (y + 2)/(-2) = ((z – 0)/1.
Координаты, которые имеет точка Е пересечения x,y,z, должны удовлетворять уравнению прямой и уравнению плоскости. Поэтому, для их определения, необходимо решить систему уравнений, которая включает уравнение прямой и уравнение плоскости. Это система:
{((x – 3)/3 = (y + 2)/(-2) = z/1.
{3x - 2y + z + 1 = 0.
Из уравнения прямой получаем зависимость переменных.
-2x + 6 = 3y + 6, отсюда y = (-2/3)x.
x - 3 = 3z, отсюда z = (1/3)x - 1.
Подставим их в уравнение плоскости 3x-2y+z+1=0.
3x – 2((-2/3)x) + 1((1/3)x -1) + 1 = 0,
3x + (4/3)x + (1/3)x – 1 + 1 = 0,
(14/3)x = 0,
x = 0,
y = (-2/3) *0 = 0,
z = (1/3)*0 - 1 = -1.
Найдена точка E пересечения перпендикуляра из точки М и плоскости, которая и является проекцией точки М на заданную плоскость.
т.к. по условию MB⊥ (АВС), то МВ перпендикулярна любой прямой, лежащей в плоскости прямоугольника, т.е. МВ⊥ВС; МВ⊥АВ и МВ⊥ВD , значит, треугольники МВС ; МВА ; МВС , MBD прямоугольные .
МС=7см; МА=6 см , MD=9 см - самая большая, т.к. проекция ВD-диагональ прямоугольника самая большая проекция указанных наклонных на плоскость прямоугольника.
Т.к.расстояние от точки до плоскости МВ можно найти через стороны и через диагональ прямоугольника, которые связаны теоремой Пифагора. nто если АВ=х, ВС=у, и. значит. х²+у²=ВD²
МВ²=МС²-ВС²=МА²-АВ²=МD²-BD² или 7²-у²=6²-х²=9²-(х²+у²), но из первых двух 7²-у²=6²-х² найдем у² через х²,
Знайти проекцію точки M(3;-2;0) на площину 3x-2y+z+1=0.
Для этого надо найти точку пересечения перпендикуляра из точки М к заданной плоскости с самой плоскостью.
Нормальный вектор этой плоскости равен (3; -2; 1) и является направляющим вектором перпендикуляра к плоскости.
Получаем уравнение перпендикуляра из точки М(3; -2; 0).
((x – 3)/3 = (y + 2)/(-2) = ((z – 0)/1.
Координаты, которые имеет точка Е пересечения x,y,z, должны удовлетворять уравнению прямой и уравнению плоскости. Поэтому, для их определения, необходимо решить систему уравнений, которая включает уравнение прямой и уравнение плоскости. Это система:
{((x – 3)/3 = (y + 2)/(-2) = z/1.
{3x - 2y + z + 1 = 0.
Из уравнения прямой получаем зависимость переменных.
-2x + 6 = 3y + 6, отсюда y = (-2/3)x.
x - 3 = 3z, отсюда z = (1/3)x - 1.
Подставим их в уравнение плоскости 3x-2y+z+1=0.
3x – 2((-2/3)x) + 1((1/3)x -1) + 1 = 0,
3x + (4/3)x + (1/3)x – 1 + 1 = 0,
(14/3)x = 0,
x = 0,
y = (-2/3) *0 = 0,
z = (1/3)*0 - 1 = -1.
Найдена точка E пересечения перпендикуляра из точки М и плоскости, которая и является проекцией точки М на заданную плоскость.
ответ: Е(0; 0; -1).
т.к. по условию MB⊥ (АВС), то МВ перпендикулярна любой прямой, лежащей в плоскости прямоугольника, т.е. МВ⊥ВС; МВ⊥АВ и МВ⊥ВD , значит, треугольники МВС ; МВА ; МВС , MBD прямоугольные .
МС=7см; МА=6 см , MD=9 см - самая большая, т.к. проекция ВD-диагональ прямоугольника самая большая проекция указанных наклонных на плоскость прямоугольника.
Т.к.расстояние от точки до плоскости МВ можно найти через стороны и через диагональ прямоугольника, которые связаны теоремой Пифагора. nто если АВ=х, ВС=у, и. значит. х²+у²=ВD²
МВ²=МС²-ВС²=МА²-АВ²=МD²-BD² или 7²-у²=6²-х²=9²-(х²+у²), но из первых двух 7²-у²=6²-х² найдем у² через х²,
у²=7²-6²+х², у²=(7-6)*(7+6)+х²=13+х²,
подставим в 9²-(х²+у²)=6²-х²
9²-(х²+13+х²)=6²-х² ⇒ 9²-6²-13=2х²-х²;
х²=15*3-13;
х²=32, т
тогда МВ²=6²-х² =36-32=4, значит, МВ=2
ответ 2