Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Такс. Сначала мы построили отрезок (единичный) а и угол, равный 90°. Затем применили теорему Пифагора, чтобы найти стороны данного прямоугольного треугольника.
Потом мы построили прямоугольный треугольник с катета ми а и а, чтобы найти и отметить длину гипотенузы, равной а√2. Затем на другой прямой мы отмерили и построили отрезок, равный 4√2а.
Затем на третьей прямой мы отмпиилм отрезок, равный 4√2a. Затем построили прямой угол и вверх отмерили 7 отрезков а. Получился отрезок, равный 7а. Затем соединили конец этого отрезка с концом отрезка, равного 4√2а (это отрезок A3B3). Таким образом мы получили прямоугольный треугольник, у которого один катет равен 7а, а другой - 9а. Синус угла, противолежащего этому катета, равному 7а, есть 7а/9а = 7/9.
Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см
Сначала мы построили отрезок (единичный) а и угол, равный 90°.
Затем применили теорему Пифагора, чтобы найти стороны данного прямоугольного треугольника.
Потом мы построили прямоугольный треугольник с катета ми а и а, чтобы найти и отметить длину гипотенузы, равной а√2.
Затем на другой прямой мы отмерили и построили отрезок, равный 4√2а.
Затем на третьей прямой мы отмпиилм отрезок, равный 4√2a.
Затем построили прямой угол и вверх отмерили 7 отрезков а.
Получился отрезок, равный 7а.
Затем соединили конец этого отрезка с концом отрезка, равного 4√2а (это отрезок A3B3).
Таким образом мы получили прямоугольный треугольник, у которого один катет равен 7а, а другой - 9а.
Синус угла, противолежащего этому катета, равному 7а, есть 7а/9а = 7/9.
Т.е. sinA10B3A3 = 7/9.