Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения[1].
Женщина обучает детей геометрии. Иллюстрация из парижской рукописи «Начал» Евклида, начало XIV века.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор
1.<А=40°
2. 18 см
Объяснение:
1. АВ=CD и BC=AD по условию, сторона BD общая доя двух треуголиников.
Соответственно по третьему признаку равенства треуголиников треугольники ABD и CBD равны
Исходя из этого имеем угол С равен углу А и равен 40°
2. Медиана делит сторону пополам. Исходя из этого получаем: АК=ВК=2 см, ВМ=СМ=3 см и АN=CN=4 см
АВ= АК+ВК=2АК=2*2=4 см
ВС= ВМ+СМ=2ВМ=2*3=6 см
АС= AN+CN=2CN=2*4=8 см
Периметр треугольника АВС=АВ+ВС+АС=4+6+8=18 см
3. Треугольник АВС равнобедренный, значит АВ=ВС. BM=BN по условию задачи. Соответственно получаем, что АМ=СN.
BD Медиана, значит получаем что АD=CD.
Так как треугольник АВС равнобедренный, соответственно угол А равен углу С.
По первому признаку равенства треугольников получаем, что треугольник MAD равен треугольнику NCD.
Из этого получаем, что MD=ND
Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения[1].
Женщина обучает детей геометрии. Иллюстрация из парижской рукописи «Начал» Евклида, начало XIV века.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор
Объяснение:
И всё