Дано: ABCD - параллелограмм. , AK=64 см, KD=225 cм, .
Найти: BD
Решение: Треугольник АВD является прямоугольным, так как BD перпендикулярно DC. A DC||AB. Значит BD является секущей при параллельных АВ и CD. Поэтому
Есть такое свойство в прямоугольном треугольнике, что высота, проведенная к гипотенузе, является средним геометрическим отрезков, на которое делит высота гипотенузу.
BK=120 см.
Теперь по теореме Пифагора BD - гипотенуза треугольника BKD.
Заданная сторона АВ, О - точка пересечения медиан, S - площадь треугольника АВС.
Тогда площадь треугольника АОВ равна S/3,
а стороны АО = 18*(2/3) = 12, ВО = 24*(2/3) = 16, АВ = 20.
Очевидно, что АОВ - "египетский" треугольник (то есть прямоугольный треугольник, подобный треугольнику со сторонами 3,4,5, коэффициент подобия равен 4), поэтому его площадь равна 12*16/2 = 96, а площадь АВС S = 96*3 = 288
Что вы там у Гоши68 нашли неправильного? Все он верно сделал, просто написал без пояснений. Другое дело, что можно было бы заметить, что АОВ - прямоугольный треугольник, но и без этого все равно решение верное.
Вообще-то, я хочу пару слов сказать тут тем, кто серьезно готовится к экзаменам. Если вы применяете такую вещь, как формула Герона - вы должны быть готовы на ходу её вывести, если преподаватель потребует. И не только её, а еще и кучу сопутствующих формул вроде малоизвестной теоремы тангенсов ... А это намного сложнее и длинее, чем эта детская задачка.
Дано: ABCD - параллелограмм. , AK=64 см, KD=225 cм, .
Найти: BD
Решение: Треугольник АВD является прямоугольным, так как BD перпендикулярно DC. A DC||AB. Значит BD является секущей при параллельных АВ и CD. Поэтому
Есть такое свойство в прямоугольном треугольнике, что высота, проведенная к гипотенузе, является средним геометрическим отрезков, на которое делит высота гипотенузу.
BK=120 см.
Теперь по теореме Пифагора BD - гипотенуза треугольника BKD.
ответ: BD=255 cм.
Заданная сторона АВ, О - точка пересечения медиан, S - площадь треугольника АВС.
Тогда площадь треугольника АОВ равна S/3,
а стороны АО = 18*(2/3) = 12, ВО = 24*(2/3) = 16, АВ = 20.
Очевидно, что АОВ - "египетский" треугольник (то есть прямоугольный треугольник, подобный треугольнику со сторонами 3,4,5, коэффициент подобия равен 4), поэтому его площадь равна 12*16/2 = 96, а площадь АВС S = 96*3 = 288
Что вы там у Гоши68 нашли неправильного? Все он верно сделал, просто написал без пояснений. Другое дело, что можно было бы заметить, что АОВ - прямоугольный треугольник, но и без этого все равно решение верное.
Вообще-то, я хочу пару слов сказать тут тем, кто серьезно готовится к экзаменам. Если вы применяете такую вещь, как формула Герона - вы должны быть готовы на ходу её вывести, если преподаватель потребует. И не только её, а еще и кучу сопутствующих формул вроде малоизвестной теоремы тангенсов ... А это намного сложнее и длинее, чем эта детская задачка.