У тебя углы относятся как 2:1:1. это значит мы берем С=2х,А=х, В=х. А т.к. углы А и В равны иксу, значит они равны между собой. Значит треугольник АВС равнобедренный (т.к. углы при основании равны А=В). составляешь уравнение находишь градусную меру углов. х+х+2х= 180 ( т.к. сумма углов треугольника равна 180) и получается 4х=180. х=180:4=45= углу А и углу В. Значит угол С=45*2=90. Значит треугольник АВС ещё и прямоугольный. смотри, так как треугольник равнобедренный, то ас=св= корень из 2. мы можем найти гипотезу ав. возьмём её за х. По теореме Пифагора: х^2= корень и двух в квадрате+ корень из двух в квадрате. квадрат и корень взаимоуничтожаются. и у тебя остаётся х^2=2+2=4. А х=корень из 4= 2. иы нашли АВ. Мы знаем, что в равнобедренном треугольнике, высота является и медианой и биссектрисой. А так как у нас треугольник вдобавок прямоугольный, то мы можем использовать такую теорему: Медина, проведенная из вершины прямого угла, равна половине гипотенузы. ( я точно нн помню, медиана или биссектриса. найди эту теорему). у нас получается что сн= половине ав. Значит СН=АВ:2=2:2=1. мы нашли то,что надо.
На эту мысль наводит отношение длин катетов и стороны АВ.
ВС=АВ:2 Если предположение верно, то данное ниже равенство будет верным: АС=√(АВ²-ВС²) Подставим известные значения сторон: 4√3 =√(64-16) √(64-16)=√48=4√3 Итак, мы доказали, что треугольник АВС прямоугольный.
Продолжим прямую ВД за АС и проведем к ней перпендикуляр.
Он равен расстоянию от А до ВД и является высотой треугольника АВД.
Точку пересечения обозначим К.
Если в прямоугольных треугольниках острый угол одного равен острому углу другого, то такие треугольники подобны.
Углы при Д в них вертикальные и потому равны.
Углы АКД=ВСД=90°
Δ АДК и Δ ВСД подобны. АД=ДС по условию задачи.
АД и ДВ - гипотенузы этих треугольников. В треугольнике АКД известна сторона АД. В треугольнике ВСД известны два катета. Найдем ВД по теореме Пифагора: ВД²=ВС²+ДС² ВД =√(16+12)=√28=2√7 ВД:АД=ВС:АК (2√7):2√3=4:АК 8√3=2АК ·√7 АК=4√3:√7 АК является высотой треугольника АВД, проведенной к стороне ВД и в то же время расстоянием от А до ВД.
составляешь уравнение находишь градусную меру углов.
х+х+2х= 180 ( т.к. сумма углов треугольника равна 180)
и получается 4х=180. х=180:4=45= углу А и углу В. Значит угол С=45*2=90. Значит треугольник АВС ещё и прямоугольный.
смотри, так как треугольник равнобедренный, то ас=св= корень из 2.
мы можем найти гипотезу ав. возьмём её за х. По теореме Пифагора: х^2= корень и двух в квадрате+ корень из двух в квадрате. квадрат и корень взаимоуничтожаются. и у тебя остаётся х^2=2+2=4. А х=корень из 4= 2. иы нашли АВ. Мы знаем, что в равнобедренном треугольнике, высота является и медианой и биссектрисой. А так как у нас треугольник вдобавок прямоугольный, то мы можем использовать такую теорему: Медина, проведенная из вершины прямого угла, равна половине гипотенузы. ( я точно нн помню, медиана или биссектриса. найди эту теорему). у нас получается что сн= половине ав. Значит СН=АВ:2=2:2=1.
мы нашли то,что надо.
Данный треугольник АВС - прямоугольный,
АВ - гипотенуза,
АС и ВС - катеты.
На эту мысль наводит отношение длин катетов и стороны АВ.
ВС=АВ:2
Если предположение верно, то данное ниже равенство будет верным:
АС=√(АВ²-ВС²)
Подставим известные значения сторон:
4√3 =√(64-16)
√(64-16)=√48=4√3
Итак, мы доказали, что треугольник АВС прямоугольный.
Продолжим прямую ВД за АС и проведем к ней перпендикуляр.
Он равен расстоянию от А до ВД и является высотой треугольника АВД.
Точку пересечения обозначим К.
Если в прямоугольных треугольниках острый угол одного равен острому углу другого, то такие треугольники подобны.
Углы при Д в них вертикальные и потому равны.
Углы АКД=ВСД=90°
Δ АДК и Δ ВСД подобны.
АД=ДС по условию задачи.
АД и ДВ - гипотенузы этих треугольников.
В треугольнике АКД известна сторона АД.
В треугольнике ВСД известны два катета.
Найдем ВД по теореме Пифагора:
ВД²=ВС²+ДС²
ВД =√(16+12)=√28=2√7
ВД:АД=ВС:АК
(2√7):2√3=4:АК
8√3=2АК ·√7
АК=4√3:√7
АК является высотой треугольника АВД, проведенной к стороне ВД и в то же время расстоянием от А до ВД.
S АВД=2√7·4√3·√7 =8√3 см²
Расстояние от А до ВД=АК=(4√3:)√7