Метод координат возьмите неколлинеарные векторы a b c отложите от некоторой точки О векторы 3*а, 1/2b. 0.4 c”
УДК 514.742ББК 22.151.0Ш52Шестаков С. А. Ш52 Векторы на экзаменах. Векторный метод в стереометрии.— М.: МЦНМО, 2005.—112 с.: ил. ISBN 5-94057-203-0В пособии изложены методы решения основных типов задач по стереометрии. Это задачи на вычисление отношений, в которых секущая плоскость делит ребрамногогранника, вычисление расстояний от точки до прямой и плоскости, расстоянийи углов между скрещивающимися прямыми, задачи на комбинации многогранникови тел вращения. Приводятся необходимые теоретические сведения, основные алго-ритмы, базирующиеся на свойствах векторов и проиллюстрированные примерами, и задачи для самостоятельного решения, отобранные из вариантов вступительныхэкзаменов в вузы и ЕГЭ. Пособие предназначено старшеклассникам, абитуриентам, учителям матема-тики. ББК
где CD – биссектриса угла C, которую нужно найти. Для решения задачи нужны дополнительные построения. Добавим точку E, лежащую на AB, такую, чтобы: EB = BC то есть △ECB является равнобедренным. Рассмотрим этот треугольник. Угол ∠B в нем равен 20°, значит: ∠ECB = ∠CEB = (180° – 20°) / 2 = 80° Рассмотрим треугольник △ACB. Углы ∠A и ∠B известны, значит: ∠C = 180° – 20° – 40° = 120° А половина ∠C равна: ∠ACD = ∠BCD = 120°/2 = 60° Рассмотрим треугольник △ACD. Углы ∠A и ∠ACD известны, значит: ∠ADC = 180° – 40° – 60° = 80° Рассмотрим треугольник △ECD. Углы ∠CED (=∠CEB) и ∠CDE (=∠ADC) равны, значит треугольник является равнобедренным и: EC = CD ∠ECD = 180° – 80° – 80° = 20° Рассмотрим треугольник △ACE. Угол ∠A известен, угол ∠ACE можно получить как разницу углов ∠ACD и ∠ECD: ∠ACE = 60° – 20° = 40° Заметим, что ∠ACE равен ∠A, то есть треугольник △ACE также равнобедренный: AE = EC Осталось вычислить искомую биссектрису CD: CD = EC = AE = AB – EB = AB – BC = 4 ОТВЕТ: 4
Метод координат возьмите неколлинеарные векторы a b c отложите от некоторой точки О векторы 3*а, 1/2b. 0.4 c”
УДК 514.742ББК 22.151.0Ш52Шестаков С. А. Ш52 Векторы на экзаменах. Векторный метод в стереометрии.— М.: МЦНМО, 2005.—112 с.: ил. ISBN 5-94057-203-0В пособии изложены методы решения основных типов задач по стереометрии. Это задачи на вычисление отношений, в которых секущая плоскость делит ребрамногогранника, вычисление расстояний от точки до прямой и плоскости, расстоянийи углов между скрещивающимися прямыми, задачи на комбинации многогранникови тел вращения. Приводятся необходимые теоретические сведения, основные алго-ритмы, базирующиеся на свойствах векторов и проиллюстрированные примерами, и задачи для самостоятельного решения, отобранные из вариантов вступительныхэкзаменов в вузы и ЕГЭ. Пособие предназначено старшеклассникам, абитуриентам, учителям матема-тики. ББК
где CD – биссектриса угла C, которую нужно найти. Для решения задачи нужны дополнительные построения. Добавим точку E, лежащую на AB, такую, чтобы: EB = BC то есть △ECB является равнобедренным. Рассмотрим этот треугольник. Угол ∠B в нем равен 20°, значит: ∠ECB = ∠CEB = (180° – 20°) / 2 = 80° Рассмотрим треугольник △ACB. Углы ∠A и ∠B известны, значит: ∠C = 180° – 20° – 40° = 120° А половина ∠C равна: ∠ACD = ∠BCD = 120°/2 = 60° Рассмотрим треугольник △ACD. Углы ∠A и ∠ACD известны, значит: ∠ADC = 180° – 40° – 60° = 80° Рассмотрим треугольник △ECD. Углы ∠CED (=∠CEB) и ∠CDE (=∠ADC) равны, значит треугольник является равнобедренным и: EC = CD ∠ECD = 180° – 80° – 80° = 20° Рассмотрим треугольник △ACE. Угол ∠A известен, угол ∠ACE можно получить как разницу углов ∠ACD и ∠ECD: ∠ACE = 60° – 20° = 40° Заметим, что ∠ACE равен ∠A, то есть треугольник △ACE также равнобедренный: AE = EC Осталось вычислить искомую биссектрису CD: CD = EC = AE = AB – EB = AB – BC = 4 ОТВЕТ: 4