1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм. Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти. Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника. Дерзайте с вычислениями!
Проведем ВК║АС (К - точка пересечения прямых ВК и АЕ).
ΔВОК = ΔDOA по стороне и двум прилежащим к ней углам (ВО = OD, ∠ВКО = ∠DAO как накрест лежащие при ВК║АС и секущей АК, углы при вершине О равны как вертикальные), ⇒
ВК = AD = b/2
ΔBKE ~ ΔCAE по двум углам (∠ВКО = ∠DAO, углы при вершине Е равны как вертикальные),
Площади треугольников с общей высотой относятся как стороны, к которым можно провести эту высоту.
В треугольниках АВЕ и АСЕ можно провести общую высоту из вершины А к сторонам ВЕ и ЕС соответственно, поэтому
То есть
BD - медиана равнобедренного треугольника АВС, делит его на два равновеликих:
AO - медиана треугольника ABD, делит его на два равновеликих:
1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм.
Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти.
Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника.
Дерзайте с вычислениями!
Объяснение:
Проведем ВК║АС (К - точка пересечения прямых ВК и АЕ).
ΔВОК = ΔDOA по стороне и двум прилежащим к ней углам (ВО = OD, ∠ВКО = ∠DAO как накрест лежащие при ВК║АС и секущей АК, углы при вершине О равны как вертикальные), ⇒
ВК = AD = b/2
ΔBKE ~ ΔCAE по двум углам (∠ВКО = ∠DAO, углы при вершине Е равны как вертикальные),
Площади треугольников с общей высотой относятся как стороны, к которым можно провести эту высоту.
В треугольниках АВЕ и АСЕ можно провести общую высоту из вершины А к сторонам ВЕ и ЕС соответственно, поэтому
То есть
BD - медиана равнобедренного треугольника АВС, делит его на два равновеликих:
AO - медиана треугольника ABD, делит его на два равновеликих: