Нам даны точки: А(1;3;9), В(-2;4;2) и С(3;1;0).Вектора и модули:АВ{-2-1;4-3;2-0} или AB{-3;1;2} . |AB|=√(9+1+4)=√14AC{3-1;1-3;0-0} или AC{2;-2;0} . |AC|=√(4+4+0)=√8.BC{3+2;1-4;0-2} или BC{5;-3;-2} . |BC|=√(25+9+4)=√38.Косинус угла между векторами находится по формуле:Cosα= (XaXb+YaYb+ZaZb)/|a|*|b|. В нашем случае:CosA=(-3*2+1*(-2)+2*0)/(√14*√8) =-2/√7≈-0,76. <A≈140°CosB=(-3*5+1*(-3)+2*(-2))/(√14*√38) =-11/√133≈-0,956.Отрицательный косинус - это тупой угол. Поскольку в треугольнике не может быть два тупых угла, берем острый угол между векторами, помня что Cos(180-α)=-Cosα. <B=arccos(0,96) ≈17°.CosC=(10+6+0)/(√8*√38) =4/√19≈0,92. <C≈23°.ответ: <A=140°. <B=17°. <C=23°.
Дано: окружность, т.О — центр, т.А ∉ окружности, АВ и АС — касательные, т.В и т.С — точки касания, ∠ВАС= 50°.
Найти: ∠ВОС.
Решение.
1) Проведём радиусы ОВ и ОС и отрезок АО.
2) Вспоминаем свойства касательной:
– касательная к окружности перпендикулярна к радиусу, проведенному в точку касания;
– отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
3) Исходя из вышеуказанных свойств, мы видим, что ОВ⟂АВ, ОС⟂АС и АВ=АС.
4) Рассмотрим ΔOBA и ΔОСА:
АВ=АС, ОВ=ОС (как радиусы), ОА — общая сторона. Значит, ΔОВА=ΔОСА по трём сторонам.
5) Поскольку ΔОВА=ΔОСА, то их соответственные углы равны.
ОВ⟂АВ, ОС⟂АС => треугольники ОВА и ОСА прямоугольные, ∠ОВА=90°, ∠ОСА=90°.
Кроме того, ∠ОАВ= ∠ОАС= ½∠ВАС= 50°÷2= 25°.
6) ∠АОВ=∠АОС= 90°–25°= 65° (в прямоугольном треугольнике сумма острых углов равна 90°)
Если еще не поздно)
Дано: окружность, т.О — центр, т.А ∉ окружности, АВ и АС — касательные, т.В и т.С — точки касания, ∠ВАС= 50°.
Найти: ∠ВОС.
Решение.
1) Проведём радиусы ОВ и ОС и отрезок АО.
2) Вспоминаем свойства касательной:
– касательная к окружности перпендикулярна к радиусу, проведенному в точку касания;
– отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
3) Исходя из вышеуказанных свойств, мы видим, что ОВ⟂АВ, ОС⟂АС и АВ=АС.
4) Рассмотрим ΔOBA и ΔОСА:
АВ=АС, ОВ=ОС (как радиусы), ОА — общая сторона. Значит, ΔОВА=ΔОСА по трём сторонам.
5) Поскольку ΔОВА=ΔОСА, то их соответственные углы равны.
ОВ⟂АВ, ОС⟂АС => треугольники ОВА и ОСА прямоугольные, ∠ОВА=90°, ∠ОСА=90°.
Кроме того, ∠ОАВ= ∠ОАС= ½∠ВАС= 50°÷2= 25°.
6) ∠АОВ=∠АОС= 90°–25°= 65° (в прямоугольном треугольнике сумма острых углов равна 90°)
7) ∠ВОС= 2∠АОВ= 65°×2= 130°.
ответ: 130°.