ответ:1. Так как М и К середины сторон треугольника (по условию), то МК - средняя линия треугольника. Поэтому МК || АС и МК= 1/2 АС = 24:2=12 см.
2. МКFE - прямоугольник, так как МК || АС, а МЕ перпендикулярно АС и КF перпендикулярно АС , значит согласно лемме о перпендикулярности двух параллельных прямых к третьей прямой (Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой), МЕ - перпендикулярно МК и КF перпендикулярно МК.
3. МК = ЕF = 12см, по свойству прямоугольника ( его стороны попарно равны и параллельны)
а) ∠L - прямой ⇒ ∠TEL = ∠L = 90° - как соответственные углы при ET║LK и секущей PL. Аналогично TN║PL - по условию ⇒ ∠LNT = ∠L = 90°,
∠ETN = ∠TEL = 90° - как пары соответственных углов ⇒ четырехугольник ETNL является прямоугольником (все углы прямые, стороны попарно параллельны)
б) Если прямая проходит через середину одной стороны треугольника параллельно другой стороне, то такая прямая является средней линией. В нашем случае (см. рисунок) ET║LK, TN║PL и Т - середина гипотенузы PK по условию ⇒ ET и TN - средние линии данного треугольника,
а значит, точки Е и N также делят пополам стороны Δ: точка Е делит пополам катет PL, а точка N - соответственно катет LK ⇒
ET = LN = , TN = EL = ⇒ периметр ETNL равен: Р = 4 + 4 + 3 + 3 = 8 + 6 = 14
ответ:1. Так как М и К середины сторон треугольника (по условию), то МК - средняя линия треугольника. Поэтому МК || АС и МК= 1/2 АС = 24:2=12 см.
2. МКFE - прямоугольник, так как МК || АС, а МЕ перпендикулярно АС и КF перпендикулярно АС , значит согласно лемме о перпендикулярности двух параллельных прямых к третьей прямой (Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой), МЕ - перпендикулярно МК и КF перпендикулярно МК.
3. МК = ЕF = 12см, по свойству прямоугольника ( его стороны попарно равны и параллельны)
ответ: ЕF= 12см
Объяснение:
а) ∠L - прямой ⇒ ∠TEL = ∠L = 90° - как соответственные углы при ET║LK и секущей PL. Аналогично TN║PL - по условию ⇒ ∠LNT = ∠L = 90°,
∠ETN = ∠TEL = 90° - как пары соответственных углов ⇒ четырехугольник ETNL является прямоугольником (все углы прямые, стороны попарно параллельны)
б) Если прямая проходит через середину одной стороны треугольника параллельно другой стороне, то такая прямая является средней линией. В нашем случае (см. рисунок) ET║LK, TN║PL и Т - середина гипотенузы PK по условию ⇒ ET и TN - средние линии данного треугольника,
а значит, точки Е и N также делят пополам стороны Δ: точка Е делит пополам катет PL, а точка N - соответственно катет LK ⇒
ET = LN = , TN = EL = ⇒ периметр ETNL равен: Р = 4 + 4 + 3 + 3 = 8 + 6 = 14
ответ: периметр равен 14 см