1) Дано: - правильная треугольная пирамида SABC, - высота пирамиды SO = Н, - угол наклона бокового ребра L к основанию равен α .
Примем сторону основания за а. Проекция AO бокового ребра AS на основание правильной пирамиды равна 2/3 высоты h основания. Из треугольника ASO находим AO = H/tg α. Высота h в 1,5 раза больше АО, то есть h = (3/2)H/tg α = 3H/(2tg α), тогда сторона а основания равна: а = h/(cos30°) = 3H/(2tg α)/(√3/2) = √3H/tg α. Площадь основания So = a²√3/4 = 3√3H²/(4tg² α) кв.ед. Тогда объём пирамиды равен: V = (1/3)SoH = (1/3)*(3√3H²/(4tg² α))*H = √3H³/(4tg² α) куб.ед.
2) Дано: правильная четырёхугольная пирамида SABCД, - высота пирамиды SO = Н, - угол наклона бокового ребра L к основанию равен α .
Половина ОА диагонали АС равна Н/tg α. Тогда сторона а основания а = Н√2/tg α. So = a² = 2H²/(tg² α). V = (1/3)*(2H²/(tg² α))*H = 2H³/(3tg² α).
- правильная треугольная пирамида SABC,
- высота пирамиды SO = Н,
- угол наклона бокового ребра L к основанию равен α .
Примем сторону основания за а.
Проекция AO бокового ребра AS на основание правильной пирамиды равна 2/3 высоты h основания.
Из треугольника ASO находим AO = H/tg α.
Высота h в 1,5 раза больше АО, то есть h = (3/2)H/tg α = 3H/(2tg α),
тогда сторона а основания равна:
а = h/(cos30°) = 3H/(2tg α)/(√3/2) = √3H/tg α.
Площадь основания So = a²√3/4 = 3√3H²/(4tg² α) кв.ед.
Тогда объём пирамиды равен:
V = (1/3)SoH = (1/3)*(3√3H²/(4tg² α))*H = √3H³/(4tg² α) куб.ед.
2) Дано:
правильная четырёхугольная пирамида SABCД,
- высота пирамиды SO = Н,
- угол наклона бокового ребра L к основанию равен α .
Половина ОА диагонали АС равна Н/tg α.
Тогда сторона а основания а = Н√2/tg α.
So = a² = 2H²/(tg² α).
V = (1/3)*(2H²/(tg² α))*H = 2H³/(3tg² α).
Все грани прямоугольного параллелепипеда - прямоугольники.
Двугранный угол DABD₁ - это угол между плоскостями DAB и ABD₁.
АВ - ребро двугранного угла.
DA⊥AB как стороны квадрата,
DA - проекция наклонной D₁A на плоскость DAB, значит
D₁A⊥АВ по теореме о трех перпендикулярах.
DA⊥AB и D₁A⊥АВ,, значит ∠D₁AD - линейный угол двугранного угла D₁ABD.
ΔADC: ∠ADC = 90°, по теореме Пифагора
AD = √(AC² - CD²) = √(100 - 36) = √64 = 8 дм
ΔD₁AD: ∠D₁DA = 90°, DD₁ = AA₁ = 8√3 дм, AD = 8 дм,
tg∠D₁AD = D₁D / AD = 8√3 / 8 = √3
∠D₁AD = 60°