ответ: 34 см
Объяснение:
1. Расстояния от концов диаметра до касательной -- это перпендикуляры к касательной из этих концов.
AB = 15 см, CD = 19 см
2. O - центр окружности, E - точка касания. Проведём OE. По свойству касательной к окружности OE ⊥ AD
3. Так как OE ⊥ AD, AB ⊥ AD, CD ⊥ AD, то AB ║ CD ║ OE
4. AB║CD ⇒ ABCD - трапеция
5. BO = OC, AB║CD║OE ⇒ AE = ED (теорема Фалеса)
6. Из пункта 5 следует, что OE - средняя линия трапеции ABCD.
OE = (AB + CD)/2 = (15+19)/2 = 34/2 = 17 см
7. OE - радиус. Тогда диаметр BC = 2OE = 2*17 = 34 см
Найди площадь фигуры, заданной на координатной плоскости.
Разобьем данную фигуру прямыми на 3 прямоугольника.
S(1)=АВ*ВН , длина отрезка АВ=-7-(-15)=-7+15=8,
длина отрезка ВН= 18-(-11)=18+11=29.
S(1)=8*29=232(ед²).
S(2)=КС*КР , длина отрезка КС=-15-(-28)=-15+28=13,
длина отрезка КР= 10-(-11)=10+11=21.
S(2)=13*21=273(ед²).
S(3)=МТ*МН , длина отрезка МТ=8-(-7)=8+7=15,
длина отрезка МН= 6-(-11)=6+11=17.
S(3)=15*17=255(ед²).
S(фигуры)=232+273+255=760(ед²)
ответ: 34 см
Объяснение:
1. Расстояния от концов диаметра до касательной -- это перпендикуляры к касательной из этих концов.
AB = 15 см, CD = 19 см
2. O - центр окружности, E - точка касания. Проведём OE. По свойству касательной к окружности OE ⊥ AD
3. Так как OE ⊥ AD, AB ⊥ AD, CD ⊥ AD, то AB ║ CD ║ OE
4. AB║CD ⇒ ABCD - трапеция
5. BO = OC, AB║CD║OE ⇒ AE = ED (теорема Фалеса)
6. Из пункта 5 следует, что OE - средняя линия трапеции ABCD.
OE = (AB + CD)/2 = (15+19)/2 = 34/2 = 17 см
7. OE - радиус. Тогда диаметр BC = 2OE = 2*17 = 34 см
Найди площадь фигуры, заданной на координатной плоскости.
Объяснение:
Разобьем данную фигуру прямыми на 3 прямоугольника.
S(1)=АВ*ВН , длина отрезка АВ=-7-(-15)=-7+15=8,
длина отрезка ВН= 18-(-11)=18+11=29.
S(1)=8*29=232(ед²).
S(2)=КС*КР , длина отрезка КС=-15-(-28)=-15+28=13,
длина отрезка КР= 10-(-11)=10+11=21.
S(2)=13*21=273(ед²).
S(3)=МТ*МН , длина отрезка МТ=8-(-7)=8+7=15,
длина отрезка МН= 6-(-11)=6+11=17.
S(3)=15*17=255(ед²).
S(фигуры)=232+273+255=760(ед²)