Квадрат — это прямоугольник у которого все стороны равны. Пусть диагонали AC и BD прямоугольника ABCD перпендикулярны и пересекаются в точке O. Диагонали прямоугольника равны и в точке пересечения делятся пополам, значит, OA=OB=OC=OD. Рассмотрим треугольники AOB и BOC. Треугольники являются прямоугольными и равны по двум катетам, поскольку AO=BO=CO. Тогда гипотенузы этих треугольников также равны, то есть, AB=BC. В прямоугольнике противоположные стороны равны, то есть, AB=CD, BC=AD. Но тогда все стороны прямоугольника равны, что и требовалось.
Пусть диагонали AC и BD прямоугольника ABCD перпендикулярны и пересекаются в точке O. Диагонали прямоугольника равны и в точке пересечения делятся пополам, значит, OA=OB=OC=OD. Рассмотрим треугольники AOB и BOC. Треугольники являются прямоугольными и равны по двум катетам, поскольку AO=BO=CO. Тогда гипотенузы этих треугольников также равны, то есть, AB=BC. В прямоугольнике противоположные стороны равны, то есть, AB=CD, BC=AD. Но тогда все стороны прямоугольника равны, что и требовалось.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.