2 Периметр десятого четырехугольника равен 1,1 (1,125). Наблюдается геометрическая прогрессия, уменьшения площадей четырехугольников: площадь третьего меньше первого в 2 раза, 5-того в 2 раза меньше 3-го и т.д., аналогично и с четными четырехугольниками: Площадь четвертого меньше второго в 2 раза. Находим 5 четный член прогрессии по формуле (это и есть площадь 10 четырехугольника) b5=b1/gСтепень(5-1); Периметр b1 вычисляем начертив второй четырехугольник P=18см. Р=18/2 в степень(5-1)=18/16=1,125 см 1 Периметр первого равен 26 см Найдем периметр 9-того четырехугольника, это пятый в геометрической последовательности нечетных четырехугольников: Р=26/2 в степени(5-1). Р26/16=1.6 см
1) Дано:
<СВА = <DBA
DB = CB.
Док-ть:
∆АСВ = ∆ADB
Док-во:
Рассмотрим ∆АСВ и ∆ADB.
АВ - общая сторона.
<СВА = <DBA, DB = CB, значит ∆АСВ = ∆ADB по | признаку (по двум сторонам и углу между ними).
5) Дано:
QK = FP, QM = MP, KM = MF
<KQM = <FPM
Док-ть:
∆QFM = ∆KMP;
∆QKM = ∆FMP;
∆QPK = ∆QPF;
∆KQF = ∆KFP;
Док-во:
QK = FP, QM = MP, KM = MF, значит КQFP - параллелограмм.
<KQM = <FPM
1) Рассмотрим ∆QFM и ∆KMP.
<KMP = <QMP как вертикальные
QM = MP, KM = MF, значит ∆QFM = ∆KMP по | признаку.
QF = KP по св-ву параллелограмма, значит ∆QFM = ∆KMP по ||| признаку.
∆QFM = ∆KMP по | и ||| признакам.
2) Рассмотрим ∆FMP и ∆QMK.
<FMP = <QMK как вертикальные.
QK = FP, KM = MF, QM = MP, значит ∆FMP = ∆QMK по | и ||| признакам.
3) Рассмотрим ∆KQP и ∆QFP.
QK = FP, QP - общая сторона
KP = QF по св-ву параллелограмма.
<KQM = <FPM
<QKP = <QFP по св-ву параллелограмма, значит ∆KQP = ∆QFP по | , || , ||| признакам.
4) Рассмотрим ∆KQF и ∆KFP.
KF - общая сторона.
QK = FP, QF = KP.
<KQF = <FPK.
∆KQF и ∆KFP по | , || , ||| признакам.
ч.т.д