Решение: 1) Пусть в одной части х° , тогда величина первого угла равна х°, второго - (2х)°, третьего - (3х)°. Зная, что сумма углов треугольника равна 180°, составим уравнение: х + 2х + 3х = 180 6х = 180 х = 180 : 6 х = 30 ∠1 = 30°, ∠2 = 60°, ∠3 = 90°. 2) В прямоугольном треугольнике напротив угла в 30° по теореме лежит катет, равный половине гипотенузы. В нашем треугольнике меньшей стороной, длина которой равна 4 см, как раз и является катет, лежащий напротив угла в 30°. Делаем вывод о том, что большая сторона, которой является гипотенуза , будет равна 4 см·2 = 8 см. ответ: 8 см.
1) Пусть в одной части х° , тогда величина первого угла равна х°, второго - (2х)°, третьего - (3х)°.
Зная, что сумма углов треугольника равна 180°, составим уравнение:
х + 2х + 3х = 180
6х = 180
х = 180 : 6
х = 30
∠1 = 30°, ∠2 = 60°, ∠3 = 90°.
2) В прямоугольном треугольнике напротив угла в 30° по теореме лежит катет, равный половине гипотенузы. В нашем треугольнике меньшей стороной, длина которой равна 4 см, как раз и является катет, лежащий напротив угла в 30°. Делаем вывод о том, что большая сторона, которой является гипотенуза , будет равна 4 см·2 = 8 см.
ответ: 8 см.
точку пересечения отрезков обозначим за О.
1)Рассмотрим треугольники ВОС и AOD, они равны, т.к. ВО=OD, ОА=ОС, а угол ВОС=углу AOD, как вертикальные при пересекающихся прямых.
Из этого следует, что ВС=AD, как соответственные элементы равных треугольников.
2)Рассмотрим треугольники ВОА и COD, они равны, т.к. ВО=OD, АО=ОС, а угол ВОА=углуCOD, как вертикальные при пересекающихся прямых.
Из этого следует, что АВ=CD
3)Рассмотрим треугольники АВС и ADC, они равныпо трем сторонам ( АС-общая, AB=CD, AD=BC из доказательств)