а)в основании пирамиды прямоугольник. по теореме пифагора ас2=ad2+dc2=122+52=144+25=169ac=13.δ asc – равнобедренныйsa–ac=13перпендикуляр ah – высота равнобедренного треугольника, которая одновременно является и медианой.значит,sh=hcб)рассмотрим треугольник равнобедренный (sb=sc=13)треугольник sbc.высота sp равнобедренного треугольника делит сторону вс пополам.вр=рс=6в а) доказано, что sh=hc,значит hp – средняя линия δ sbc и hp|| sbпроводим pf ⊥ sb и hk || pf ⇒ hk ⊥ sb.hk=pfpf– высота прямоугольного треугольника sbp.sb=13bp=6sp=√sb2–bp2=√169–36=√133так как sδ sbp=(1/2)sb·pf и sδ sbp=(1/2)·bp·sp, тоpf· sb=bp·sb ⇒ pf=6·√133/13hk=pf=6·√133/13о т в е т.6·√133/13
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
а)в основании пирамиды прямоугольник. по теореме пифагора ас2=ad2+dc2=122+52=144+25=169ac=13.δ asc – равнобедренныйsa–ac=13перпендикуляр ah – высота равнобедренного треугольника, которая одновременно является и медианой.значит,sh=hcб)рассмотрим треугольник равнобедренный (sb=sc=13)треугольник sbc.высота sp равнобедренного треугольника делит сторону вс пополам.вр=рс=6в а) доказано, что sh=hc,значит hp – средняя линия δ sbc и hp|| sbпроводим pf ⊥ sb и hk || pf ⇒ hk ⊥ sb.hk=pfpf– высота прямоугольного треугольника sbp.sb=13bp=6sp=√sb2–bp2=√169–36=√133так как sδ sbp=(1/2)sb·pf и sδ sbp=(1/2)·bp·sp, тоpf· sb=bp·sb ⇒ pf=6·√133/13hk=pf=6·√133/13о т в е т.6·√133/13
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.