Два угла равны 105 и 45, значит, третий = 30. Против угла 30 градусов лежит сторона 7 корня из 2. Из вершины угла 105 опускаем высоту на большую сторону. Получаем 2 прямоугольных треугольника. Причем, угол 105 разбивается на 2 угла 45 и 60. Находим катет из треугольника с углами 45. Гипотенуза 7 корней из 2, значит катет равен 7. Теперь рассматриваем треугольник с углами 30, 60 и 90. Против угла в 30 градусов в прямоугольном треугольнике лежит катет, равный половине гипотенузы. Значит, средняя сторона исходного треугольника, лежащая против угла 45 градусов, равна 7*2 = 14 см.
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3
Следовательно, площадь полной поверхности призмы равна
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
= 18 + 4√3