Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
Сделаем рисунок трапеци АВСД, вписанной в окружность. Опустим из тупого угла В высоту ВН. АН=(АД-ВС):2=5 В прямоугольном треугольнике АВН катет ВН равен половине гипотенузы АВ. Если катет равен половине гипотенузы, - противолежащий ему угол равен 30° Угол АВН=30°, следовательно, угол ВАН = 60° Из В проведем диаметр ВЕ окружности и соединим Е с Д. Углы ВАД и ВЕД вписанные, опираются на одну и ту же дугу ВСД и потому равны. =>угол ВЕД=60° ВЕ=ВД:sin(60°) ВД=√(ВН²+НД²) ВН=АВ*sin(30°)=5√3 НД=АД-АН=25 ВД =√{(5√3)²+25²}=√(75+625)=10√7 ВЕ=ВД:sin(60°)= (20√7):√3 R=ВЕ:2=(10√7):√3 S круга=πR²=π*700:3=π233 ¹/₃ ≈ 733 см² (если π не округлять до 3,14) -------------- Или из подобия треугольников ВДЕ и АВН - оба эти треугоьника прямоугольные и имеют по равному острому углу: АВ:ВЕ=ВН:ВД 10:BE=5√3:10√7 ...из этой пропорции 5√3 ВЕ=10*10√7 ВЕ=100√7:5√3=(20√7):√3 R=ВЕ:2=10√7):√3 S круга=πR²=π*700:3=233 ¹/₃ ≈ 733 см
По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему :
x + y + x = 278° 2 x + y = 278° 2 x + y = 278°
⇒ ⇒
x + y + x + y =360° 2 x + 2 y = 360° x + y = 180°
Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒
х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98°
Тогда у = 180° - х = 180° - 98° = 82°
ответ : 98 ° ; 82° ; 98° ; 82°
Опустим из тупого угла В высоту ВН.
АН=(АД-ВС):2=5
В прямоугольном треугольнике АВН катет ВН равен половине гипотенузы АВ.
Если катет равен половине гипотенузы, - противолежащий ему угол равен 30°
Угол АВН=30°, следовательно, угол ВАН = 60°
Из В проведем диаметр ВЕ окружности и соединим Е с Д.
Углы ВАД и ВЕД вписанные, опираются на одну и ту же дугу ВСД и потому равны. =>угол ВЕД=60°
ВЕ=ВД:sin(60°)
ВД=√(ВН²+НД²)
ВН=АВ*sin(30°)=5√3
НД=АД-АН=25
ВД =√{(5√3)²+25²}=√(75+625)=10√7
ВЕ=ВД:sin(60°)= (20√7):√3
R=ВЕ:2=(10√7):√3
S круга=πR²=π*700:3=π233 ¹/₃ ≈ 733 см² (если π не округлять до 3,14)
--------------
Или из подобия треугольников ВДЕ и АВН - оба эти треугоьника прямоугольные и имеют по равному острому углу:
АВ:ВЕ=ВН:ВД
10:BE=5√3:10√7 ...из этой пропорции
5√3 ВЕ=10*10√7
ВЕ=100√7:5√3=(20√7):√3
R=ВЕ:2=10√7):√3
S круга=πR²=π*700:3=233 ¹/₃ ≈ 733 см