Cм. рисунок и обозначения в приложении По теореме косинусов (2√3)²=6²+х²-2·6·х·cos 30° 12=36+x²-6√3·x=0 x²- 6√3·x+24=0 D=108-96=12 x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника. Углы параллелограмма 60° и 120°
если х=4√3 то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали) 6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60° второй угол параллелограмма 120° см. рисунок 2 ответ 120° и 60°
ответ: Р = 240 см.
Объяснение:
Рассмотрим 4-угольник ANCM:
Угол NCM = 360 - угол MAN - 90 - 90 (так как AN,AM - высоты) = 360 - 180 - 60 = 120 градусов, причём по свойствам ромба угол NCM равен углу BAD.
Теперь рассмотрим сам ромб. Так как его тупые углы нам известны, то можно найти острые углы:
Угол ADC равен углу ABC и равен (360 - 120 -120)/2 = 120/2 = 60 градусов.
Рассмотрим треугольник ADM. Он прямоугольный с углом AMD = 90 градусов (АМ - высота). Найдём угол DAM:
Угол DAM равен (180 - 90 - угол ADM) = (90 - угол ADC) = (90 - 60) = 30 градусов. Катет против угла в 30 градусов равен половине гипотенузы, то есть DM = 1/2 AD => AD = 2DM = 2 * 30 = 60 см.
Так как в ромбе все стороны равны, то Рромба = 4 * AD = 4 * 60 = 240 см.
По теореме косинусов
(2√3)²=6²+х²-2·6·х·cos 30°
12=36+x²-6√3·x=0
x²- 6√3·x+24=0
D=108-96=12
x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника.
Углы параллелограмма 60° и 120°
если х=4√3
то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали)
6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60°
второй угол параллелограмма 120°
см. рисунок 2
ответ 120° и 60°