Найдите синус, косинус и тангес меньшего острого угла прямоугольного треугольника с катетом 40 см и гипотенузой 41 см. гипотенуза прямоугольного треугольника равна 20 см, а косинус одного из острых углов равен 0,8. найдите катеты одного треугольника. найдите острые углы прямоугольного треугольника, если его катеты равны 2,5√(корень)3 см и 2,5 см.
Поскольку сумма трех их них равна 320°, на четвертый остается:
360°-320°=40°
Смежный с ним равен 180°-40°=140°
ответ: Две пары вертикальных углов. Одна пара по 40°, вторая по 140°.
2) Пусть один из данных вертикальных углов х.
С каждым из этих вертикальных смежный угол составляет 180°, и равен 180°-х
Тогда сумма двух вертикальных х+х=2х,
и это в 4 раза меньше, чем 180-х
4*2х=180°-х
9х=180°
х=20° ( каждый из данных вертикальных)
Их сумма 40°, а смежный с каждым из них 180°-20°=160°
160°:40°=4 ( смежный больше суммы в 4 раза)
3) Сумма углов при пересечении двух прямых 360°
Пусть четвертый угол равен х°
Тогда сумма остальных трех
х+260°
Сумма всех четырех углов
х+(х+260)=360°
2х=100°
х=50°( вертикальный с ним тоже 50°)
Смежные с ними углы равны 180°-50°=130°
ответ. 2 угла по 50°, 2 угла по 130°
1. Пусть х - один из вертикальных углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Вертикальные углы равны, тогда 2х - сумма двух вертикальных углов.
Получаем уравнение:
2x + 30° = 180° - x
3x = 150°
x = 50°
ответ: каждый из двух вертикальных углов равен 50°.
2. Пусть х - один из углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Получаем уравнение:
1/8 x + 3/4 (180° - x) = 90° |· 8
x + 6 (180° - x) = 720°
x + 1080° - 6x = 720°
5x = 360°
x = 72° - один из смежных углов.
180° - 72° = 108° - второй угол.
Разность данных углов:
108° - 72° = 36°
ответ: 36°.
3. ∠1 + ∠2 + ∠3 - ∠4 = 280° по условию задачи.
∠1 = ∠3 и ∠2 = ∠4 как вертикальные, значит
2 · ∠1 = 280°
∠1 = 140°
∠3 = ∠1 = 140°
∠2 = 180° - ∠1 = 180° - 140° = 40°, так как ∠2 и ∠1 смежные, а сумма смежных углов равна 180°.
∠4 = ∠2 = 40°
ответ: 40°, 40°, 140°, 140°.