Если окружность описана вокруг многоугольника, на ней лежат все его вершины. Расстояние от центра многоугольника до вершин, расположенных на окружности, равно её радиусу. ⇒∆ АОВ- равнобедренный с боковыми сторонами, равными 12 см. АВ - его основание. Радиусы описанной окружности, соединяясь с вершинами девятиугольника, делят его на 9 равных треугольников. Угол при вершине О равен 1/9 градусной меры окружности, т.е. ∠АОВ=360°:9-40° Площадь треугольника можно найти разными Для этого треугольника применим формулу S=a•a•sinα:2, где а=R - боковые стороны равнобедренного треугольника, α-центральный угол девятиугольника, образованный ими, и равный 40°. S(∆АОВ)=12²•0.64279:2≈ 46,28 см² Правильный девятиугольник состоит из 9-ти таких треугольников. Его площадь S=46,28•9=416,52 см²
Точка N(1;1;2) лежит на прямой m; вектор a(5;-1;2) параллелен прямой m. В качестве направляющего вектора прямой l возьмем вектор MN+ta, подобрав t таким образом, чтобы получившийся вектор перпендикулярен a, то есть чтобы скалярное произведение этих векторов равнялось нулю.
MN=(1-2;1-4;2-1)=( - 1; - 3; 1);
(MN+ta;a)=0; (MN;a)+t(a;a)=0; (-1)5+(-3)(-1)+2+(5^2+(-1)^2+2^2)t=0; -5+3+2+30t=0; t=0. Таким образом, задача сформулирована так, что сам вектор MN перпендикулярен прямой m. Тем проще. Остается написать канонические уравнения прямой l, как прямой, проходящей через точку M и перпендикулярной вектору MN (хотя, если честно, я больше люблю параметрические уравнения...):
Расстояние от центра многоугольника до вершин, расположенных на окружности, равно её радиусу.
⇒∆ АОВ- равнобедренный с боковыми сторонами, равными 12 см. АВ - его основание. Радиусы описанной окружности, соединяясь с вершинами девятиугольника, делят его на 9 равных треугольников.
Угол при вершине О равен 1/9 градусной меры окружности,
т.е. ∠АОВ=360°:9-40°
Площадь треугольника можно найти разными
Для этого треугольника применим формулу S=a•a•sinα:2, где а=R - боковые стороны равнобедренного треугольника, α-центральный угол девятиугольника, образованный ими, и равный 40°.
S(∆АОВ)=12²•0.64279:2≈ 46,28 см²
Правильный девятиугольник состоит из 9-ти таких треугольников. Его площадь S=46,28•9=416,52 см²
подобрав t таким образом, чтобы получившийся вектор перпендикулярен a, то есть чтобы скалярное произведение этих векторов равнялось нулю.
MN=(1-2;1-4;2-1)=( - 1; - 3; 1);
(MN+ta;a)=0; (MN;a)+t(a;a)=0; (-1)5+(-3)(-1)+2+(5^2+(-1)^2+2^2)t=0;
-5+3+2+30t=0; t=0.
Таким образом, задача сформулирована так, что сам вектор MN перпендикулярен прямой m. Тем проще. Остается написать канонические уравнения прямой l, как прямой, проходящей через точку M и перпендикулярной вектору MN (хотя, если честно, я больше люблю параметрические уравнения...):