1) Так как по заданию дана правильная четырехугольная пирамида с равными рёбрами, то боковые грани такой пирамиды - это равносторонние треугольники.
Из точки N проводим прямую, параллельную SA, до пересечения с плоскостью основания. В треугольнике ASC это средняя линия, точка пересечения прямой из точки N - это центр основания, точка О.
Через точки М и О проводим след сечения заданной плоскости с основанием. Этот след пересекает ребро СД в его середине - в точке К.
Так как отрезок МК параллелен ВС (это линия пересечения боковой грани BSC и основания, то в грани BSC из точки N проводим прямую, параллельную ВС. Отрезок NP - это след сечения заданной плоскостью грани BSC.
Осталось соединить точки М и Р и сечение готово.
Оно представляет собой равнобокую трапецию. Основание её равно стороне основания пирамиды, а остальные стороны трапеции как средние линии треугольников боковых граней равны половине стороны основания.
2) Угол между прямыми SA и MN найдём методом параллельного переноса.
Перенесём отрезок MN точкой М в точку А, то есть на половину стороны основания. Тогда точка N при сдвиге на половину стороны основания переместится в середину бокового ребра CSD (на длину средней линии этой грани). Получим медиану треугольника АSD.
Так как боковая грань - равносторонний треугольник с углами по 60 градусов, то угол между ребром SA и медианой этой грани равен 30 градусов.
Сечение перпендикулярно к плоскости ABC означает , что оно перпендикулярно и плоскости ABCD(через три точки проходит единственная плоскость). Из точки O провести перпендикуляр OH к плоскости основания ABCD: OH┴ (ABCD) ; H ∈ AC , т.к. ( SAC) ┴ (ABCD). плоскость Δ -ка SAC ┴ плоскости ABCD ; (SAC) проходит через высоту пирамиды (DOH) ┴(ABCD)_ проходит через OH которая ┴ (ABCD). Через точки D и H провести линию (находится в плоскости ABCD) которая пересекается со стороной BC допустим в точке E. Сечение DOE искомое. (DO∈(DSC) ;DE∈(ABCD) ; OE ∈(BSC)
1) Так как по заданию дана правильная четырехугольная пирамида с равными рёбрами, то боковые грани такой пирамиды - это равносторонние треугольники.
Из точки N проводим прямую, параллельную SA, до пересечения с плоскостью основания. В треугольнике ASC это средняя линия, точка пересечения прямой из точки N - это центр основания, точка О.
Через точки М и О проводим след сечения заданной плоскости с основанием. Этот след пересекает ребро СД в его середине - в точке К.
Так как отрезок МК параллелен ВС (это линия пересечения боковой грани BSC и основания, то в грани BSC из точки N проводим прямую, параллельную ВС. Отрезок NP - это след сечения заданной плоскостью грани BSC.
Осталось соединить точки М и Р и сечение готово.
Оно представляет собой равнобокую трапецию. Основание её равно стороне основания пирамиды, а остальные стороны трапеции как средние линии треугольников боковых граней равны половине стороны основания.
2) Угол между прямыми SA и MN найдём методом параллельного переноса.
Перенесём отрезок MN точкой М в точку А, то есть на половину стороны основания. Тогда точка N при сдвиге на половину стороны основания переместится в середину бокового ребра CSD (на длину средней линии этой грани). Получим медиану треугольника АSD.
Так как боковая грань - равносторонний треугольник с углами по 60 градусов, то угол между ребром SA и медианой этой грани равен 30 градусов.
Из точки O провести перпендикуляр OH к плоскости основания ABCD: OH┴ (ABCD) ; H ∈ AC , т.к. ( SAC) ┴ (ABCD).
плоскость Δ -ка SAC ┴ плоскости ABCD ; (SAC) проходит через высоту пирамиды
(DOH) ┴(ABCD)_ проходит через OH которая ┴ (ABCD).
Через точки D и H провести линию (находится в плоскости ABCD)
которая пересекается со стороной BC допустим в точке E.
Сечение DOE искомое.
(DO∈(DSC) ;DE∈(ABCD) ; OE ∈(BSC)
***плоскости ABC и ABCD одна и та же***