Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Задача не совсем однозначна. Обычно в таких задачах находят площадь поверхности, которую нужно покрыть, площадь одной плитки и, разделив первую на вторую, находят нужное количество плиток. То есть
а) 200•180:(30•30)=40 (шт).
б) 200•180:(25•25)=57,6 =58 (шт).
Столько их потребуется, если укладывая плитки, которые по размеру не помещаются полностью целиком по размерам пола, резать некоторые и часть пола покрыть кусочками.
Но нередко количество плиток зависит от размеров как поверхности для покрытия, так и размеров самой плитки.
а) Если брать плитки размером 30•30 целиком, их потребуется по одной стороне 180:30=6 плиток, по второй
200:30=6 плиток и остается часть пола 20 см. Следовательно, нужен еще один ряд. Всего 6•7=42 плитки.
б) Если брать плитки размером 25•25, то по одной стороне поместится 200:25=8 плиток, по другой 180:25=7 плиток и останется 5 см пола. Т.е. нужен еще один ряд. Всего 8•8=64.
Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Задача не совсем однозначна. Обычно в таких задачах находят площадь поверхности, которую нужно покрыть, площадь одной плитки и, разделив первую на вторую, находят нужное количество плиток. То есть
а) 200•180:(30•30)=40 (шт).
б) 200•180:(25•25)=57,6 =58 (шт).
Столько их потребуется, если укладывая плитки, которые по размеру не помещаются полностью целиком по размерам пола, резать некоторые и часть пола покрыть кусочками.
Но нередко количество плиток зависит от размеров как поверхности для покрытия, так и размеров самой плитки.
а) Если брать плитки размером 30•30 целиком, их потребуется по одной стороне 180:30=6 плиток, по второй
200:30=6 плиток и остается часть пола 20 см. Следовательно, нужен еще один ряд. Всего 6•7=42 плитки.
б) Если брать плитки размером 25•25, то по одной стороне поместится 200:25=8 плиток, по другой 180:25=7 плиток и останется 5 см пола. Т.е. нужен еще один ряд. Всего 8•8=64.
См. рисунок вложения.