1) на первом рисунке углы при основании равны. Это и есть описание равнобедренного треугольника.
на втором рисунке один угол 90, ещё один 45, зная что сумма всех углов в треугольнике 180, выясним что и неизвестный нам угол тоже 45. Получается углы при основании равны и равны 45 градусам.
2) 1-ое утверждение верно потому что медиана делит сторону на которую падает пополам. Следовательно эти части бдут равны.
4-ое утверждение верно потому что биссектриса делит угол пополам. Следовательно разделенный углы образованные делением угла ABC равны.
5-ое утверждение верно потому что высота падает под углом 90 градусов.
Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см
1) 1 и 2 рисунки
2) 1, 4, 5 утверждения верны
Объяснение:
1) на первом рисунке углы при основании равны. Это и есть описание равнобедренного треугольника.
на втором рисунке один угол 90, ещё один 45, зная что сумма всех углов в треугольнике 180, выясним что и неизвестный нам угол тоже 45. Получается углы при основании равны и равны 45 градусам.
2) 1-ое утверждение верно потому что медиана делит сторону на которую падает пополам. Следовательно эти части бдут равны.
4-ое утверждение верно потому что биссектриса делит угол пополам. Следовательно разделенный углы образованные делением угла ABC равны.
5-ое утверждение верно потому что высота падает под углом 90 градусов.
Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см