ожидайте результат анализа функции (точки пересечения с осями координат) и график функции под полем задания функции.
При необходимости вы можете построить одновременно графики двух функций онлайн. Для этого нажмите кнопку «Добавить функцию».
В случае построения двух графиков функции будут показаны их точки пересечения.
Таблица обозначений для задания функций
Математическая операция Символ Пример использования
Десятичная дробь Можно и через точку, и через запятую. «2,789» или «2.879»
Сложение «+» x + 1
Вычитание «-» x - 2.5
Умножение «*»(shift + 8) 2 * x
Коэффициент при «x» можно записывать без знака умножения. Например: «2x».
Но при умножении скобок обязательно использовать символ «*».
Правильно: «(2x - 1) * (6.7 - x)».
Деление «/» (знак во на английской раскладке) (x - 1) / 2
Дробь Кнопка «Дробь»
x - 2
10
-
1
2
Модуль Кнопка «Модуль» |x - 2.3|
Возведение в степень Кнопка «Возведение в степень»
или
«^»(shift + 6)
При нажатой кнопке «Возведение в степень» символы попадают в степень. Чтобы вернуться к обычному набору символу, нужно отжать кнопку «Возведение в степень».
Другой задания степени через знак «^». Например: «x^(2)».
Чтобы построить график функции онлайн:
укажите функцию в поле выше в виде «y = x2 - 3»;
нажмите кнопку «Построить график функции»;
ожидайте результат анализа функции (точки пересечения с осями координат) и график функции под полем задания функции.
При необходимости вы можете построить одновременно графики двух функций онлайн. Для этого нажмите кнопку «Добавить функцию».
В случае построения двух графиков функции будут показаны их точки пересечения.
Таблица обозначений для задания функций
Математическая операция Символ Пример использования
Десятичная дробь Можно и через точку, и через запятую. «2,789» или «2.879»
Сложение «+» x + 1
Вычитание «-» x - 2.5
Умножение «*»(shift + 8) 2 * x
Коэффициент при «x» можно записывать без знака умножения. Например: «2x».
Но при умножении скобок обязательно использовать символ «*».
Правильно: «(2x - 1) * (6.7 - x)».
Деление «/» (знак во на английской раскладке) (x - 1) / 2
Дробь Кнопка «Дробь»
x - 2
10
-
1
2
Модуль Кнопка «Модуль» |x - 2.3|
Возведение в степень Кнопка «Возведение в степень»
или
«^»(shift + 6)
При нажатой кнопке «Возведение в степень» символы попадают в степень. Чтобы вернуться к обычному набору символу, нужно отжать кнопку «Возведение в степень».
Другой задания степени через знак «^». Например: «x^(2)».
Корень Кнопка
«Корень» 2 √(x - 2) — квадратный корень
3 √(2x - 1) — кубический корень
Синус Кнопка
«Синус» sin(x + 1)
Косинус Кнопка
«Косинус» cos(x)
Тангенс Кнопка
«Тангенс» tg(2.5 - x)
Число π (пи) Кнопка
«Число «Пи» sin(x + π) + 2
Логарифм Кнопка
«Логарифм» log2(2x - 1,4)
Натуральный логарифм Кнопка
«Натуральный логарифм» ln(x) - 2
Десятичный логарифм Кнопка
«Десятичный логарифм» lg(2.3 - x)
Основание натурального логарифма (число Эйлера) Кнопка
«Основание натурального логарифма» ex
Объяснение:
Объяснение:
АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.