Найдите углы равнобедренного треугольника АВС с основанием АС, если <АВС=70°. В ответ запишите все номера возможных ответов. 1)40° ;70°;70° 2)70°;55°;55° 3)35°;35°;70° 4)50°;50°;70°
Пирамида правильная, следовательно, вершина S проецируется в центр О основания (квадрата АВСD), а все углы, образованные боковыми гранями с плоскостью основания, равны. Это двугранные углы, измеряемые линейным углом, получаемым при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). В нашем случае это угол SHO, образованный пересечением плоскостей основания и боковой грани плоскостью SOH, перпендикулярной основанию и боковому ребру (то есть перпендикулярной ребру АВ).
Тогда из прямоугольного треугольника SOH имеем:
SO = SH*Sinα = L*Sinα (высота пирамиды), а НО = L*Соsα.
Заметим, что НО - это половина стороны основания. Сторона равна 2*L*Соsα.
Если геометрическое тело составлено из геометрических тел, не имеющих общих внутренних точек, то объем данного тела равен сумме объемов тел его составляющих;
Объем куба, ребро которого равно единице измерения длины, равен единице;
Равные геометрические тела имеют равные объемы.
4)Две фигуры называются на плоскости (в пространстве) называются равновеликими, если их площади (объемы) равны. * Любые две простые равновеликие фигуры на плоскости (в том числе, например, равновеликие многоугольники) равносоставлены.
5)Две фигуры и называются подобными, если существует подобие, переводящее одну из них в другую. Подобием называется преобразование пространства, при котором расстояния между точками изменяются в одно и то же число раз
6) Две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия. ... Подобием называется преобразование пространства, при котором расстояния между точками умножаются на одно и то же положительное число
7) Для подобных фигур на плоскости, имеющих площадь, верна теорема: отношение площадей подобных фигур равно квадрату коэффициента подобия. Для подобных пространственных тел, имеющих объем, верна аналогичная теорема: отношение объемов подобных тел равно кубу коэффициента подобия.
Пирамида правильная, следовательно, вершина S проецируется в центр О основания (квадрата АВСD), а все углы, образованные боковыми гранями с плоскостью основания, равны. Это двугранные углы, измеряемые линейным углом, получаемым при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). В нашем случае это угол SHO, образованный пересечением плоскостей основания и боковой грани плоскостью SOH, перпендикулярной основанию и боковому ребру (то есть перпендикулярной ребру АВ).
Тогда из прямоугольного треугольника SOH имеем:
SO = SH*Sinα = L*Sinα (высота пирамиды), а НО = L*Соsα.
Заметим, что НО - это половина стороны основания. Сторона равна 2*L*Соsα.
Тогда площадь основания So = 4*L²*Соs²α.
Объем пирамиды равен (1/3)*So*SO = (1/3)*4*L²*Соs²α*L*Sinα.
V = (4/3)*L³*Соs²α*Sinα = (2/3)*L³*Соsα*Sin2α (так как
2Sinα*Cosα = Sin2α).
ответ: V = (2/3)*L³*Соsα*Sin2α.
1) кг
2) литры
3) Свойства объемов тел
Объем тела есть неотрицательное число;
Если геометрическое тело составлено из геометрических тел, не имеющих общих внутренних точек, то объем данного тела равен сумме объемов тел его составляющих;
Объем куба, ребро которого равно единице измерения длины, равен единице;
Равные геометрические тела имеют равные объемы.
4)Две фигуры называются на плоскости (в пространстве) называются равновеликими, если их площади (объемы) равны. * Любые две простые равновеликие фигуры на плоскости (в том числе, например, равновеликие многоугольники) равносоставлены.
5)Две фигуры и называются подобными, если существует подобие, переводящее одну из них в другую. Подобием называется преобразование пространства, при котором расстояния между точками изменяются в одно и то же число раз
6) Две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия. ... Подобием называется преобразование пространства, при котором расстояния между точками умножаются на одно и то же положительное число
7) Для подобных фигур на плоскости, имеющих площадь, верна теорема: отношение площадей подобных фигур равно квадрату коэффициента подобия. Для подобных пространственных тел, имеющих объем, верна аналогичная теорема: отношение объемов подобных тел равно кубу коэффициента подобия.
8) цилиндр, конус