Смотрим определение синуса в учебнике геометрии. "Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе".
Дает ли это определение понимание синуса? Нет, не дает. Определение не полное. Потому что оно рассматривает только частный случай треугольника - прямоугольный треугольник.
Смотрим определение синуса в учебнике алгебры. "Ордината точки Р, полученной при повороте точки Р (1;0) вокруг начала координат на угол а-радиан, называется синусом числа а, а абсцисса этой точки - косинусом".
Это определение вообще из области математической абстракции, так как вводит отрицательные значения синуса и косинуса. И с пониманием синуса по этому определению ещё больше сложностей.
Есть простой тест на понимание синуса и косинуса. Попросите школьника нарисовать линию косинуса для произвольного треугольника (не прямоугольного). Если он этого сделать не может - он не понимает, что такое синус и косинус.
ABCD-Ромб
Bd=13см(меньшая диагональ)
BH=12см
Найти S
у Треугольника BDH угол H=90 градусов,BD=13,BH=12cm теперь по тиареме Пифагора:
HD=Под Корнем BD(D в квадрате)-BH(Hв квадрате)=под корнем 13в квадрате-12в квадрате=5 см
теперь 2 у трегуольника ABH Угол h=90 градусов,BH=12,AH=AD-HD=(AB-5)cm теперь по теореме пифагора
AB(B в квадрате)=AH(H в квадрате)+BH(H в квадрате)
AB(B в квадрате)=(AB-5)в квадрате+12 в квадрате
AB(B в квадрате)=AB(B в квадрате)-10AB+25+144,10AB=169
AB=16.9
и Теперь Находим площадь
S=Ab умножить на BH=16,9 умножить на 12=202,8см(см в квадрате)
S=202.8см
Визуализация синуса
Запоминание через понимание
Смотрим определение синуса в учебнике геометрии. "Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе".
Дает ли это определение понимание синуса? Нет, не дает. Определение не полное. Потому что оно рассматривает только частный случай треугольника - прямоугольный треугольник.
Смотрим определение синуса в учебнике алгебры. "Ордината точки Р, полученной при повороте точки Р (1;0) вокруг начала координат на угол а-радиан, называется синусом числа а, а абсцисса этой точки - косинусом".
Это определение вообще из области математической абстракции, так как вводит отрицательные значения синуса и косинуса. И с пониманием синуса по этому определению ещё больше сложностей.
Есть простой тест на понимание синуса и косинуса. Попросите школьника нарисовать линию косинуса для произвольного треугольника (не прямоугольного). Если он этого сделать не может - он не понимает, что такое синус и косинус.
Объяснение: