Точка D может быть получена параллельным переносом точки C на вектор BA . Вектор BA( 2+1 ;4-1 ; -1-3 ) или вектор ВА(3;3;-4).Вектор ВА=СD , значит и координаты равны ⇒ х(СD)=x(D)-x(C) или 3=x(D)-5, x(D)=8 .
Пусть а=7, b=6 - стороны параллелограмма, обозначим диагональ d₁=x, тогда d₂=16-x Применяем формулу: сумма квадратов всех сторон параллелограмма равна сумме квадратов диагоналей.
2·а²+2·b²=d₁²+d₂² 2·7² + 2· 6²=х²+(16-х)² решаем квадратное уравнение: 98+72=х²+256-32х+х², х²-16х+43=0, D=b²-4ac=16²-4·43=256-172=84 x₁=8- √21 x₂=8+√21 если d₁=8-√21, тогда d₂=16-(8-√21)=8+√21 если d₁=8+√21, тогда d₂=16-(8+√21)=8-√21
Меньшая диагональ 8-√21, найдем косинус острого угла по теореме косинусов:
(8-√21)²=6²+7²-2·6·7·сosα
cosα=(36+49-64-21+16√21) / 84=4√21/21=4/√21 тогда sin α=√(1-(4/√21)²)=√(1-(16/21))=√(5/21) h=6·sinα=6√(5/21)
Даны точки A(2,4,-1) B (-1,1,3), C(5,1,2). Найдите координаты точки D, такой , что четырёхугольник ABCD - параллелограмм
Объяснение:
.Пусть координаты D(x;у) .Т.к. ABCD-параллелограмм, то
диагонали , точкой пересечения , делятся пополам. Пусть О-точка пересечения . Тогда
1) АО=СО. Координаты О : х(О)=(х(А)+х(С)):2 , х(О)=(2+5):2=3,5. Аналогично у(О)=(4+1):2=2,5 , z(O)=(-1+2):2=0,5.
2) ВО=DО.
х(О)=(х(B)+х(D)):2 , 3,5=(-1+x(D)):2, 7=-1+x(D), x(D)=8;
y(О)=(y(B)+y(D)):2 , 2,5=(1+y(D)):2, 5=1+y(D), y(D)=4;
z(О)=(z(B)+z(D)):2 , 0,5=(3+z(D)):2, 1=3+z(D), z(D)=-2;
D( 8; 4; -2).
.
Точка D может быть получена параллельным переносом точки C на вектор BA . Вектор BA( 2+1 ;4-1 ; -1-3 ) или вектор ВА(3;3;-4).Вектор ВА=СD , значит и координаты равны ⇒ х(СD)=x(D)-x(C) или 3=x(D)-5, x(D)=8 .
Аналогично 3=у(D)-1, у(D)=4 .
-4=z(D)-2 , z(D)=-2 . Получили D( 8; 4; -2).
d₁=x, тогда d₂=16-x
Применяем формулу: сумма квадратов всех сторон параллелограмма равна сумме квадратов диагоналей.
2·а²+2·b²=d₁²+d₂²
2·7² + 2· 6²=х²+(16-х)²
решаем квадратное уравнение:
98+72=х²+256-32х+х²,
х²-16х+43=0,
D=b²-4ac=16²-4·43=256-172=84
x₁=8- √21 x₂=8+√21
если d₁=8-√21, тогда d₂=16-(8-√21)=8+√21
если d₁=8+√21, тогда d₂=16-(8+√21)=8-√21
Меньшая диагональ 8-√21, найдем косинус острого угла по теореме косинусов:
(8-√21)²=6²+7²-2·6·7·сosα
cosα=(36+49-64-21+16√21) / 84=4√21/21=4/√21
тогда sin α=√(1-(4/√21)²)=√(1-(16/21))=√(5/21)
h=6·sinα=6√(5/21)