Найдите площадь описанной около окружности правильного треугольника,если площадь вписанного в эту окружность квадрата равна 2√3 см².
Дано: S₁=2√3 см² (площадь квадрата вписанной в окружность ).
S = S(Δ) -? S =pr = (3a/2)*r , где a длина стороны правильного треугольника , r - радиус вписанной в треугольник окружности: r = a√3/ 6 ⇒ a =6r /√3 = (2√3) *r . Значит S = (3*2√3 / 2)*r² = (3√3)*r² . С другой стороны по условию площадь квадрата вписанной в окружность S₁= ( 2 r*2r)/2 = 2r² ⇒ r² = S₁/2. * * *или по другому S₁=b² =(r√2)² =2r² * * * Следовательно : S = (3√3)*r² = (3√3)*S₁/2=(3√3)*2√3/2 = 9 (см² ) .
ответ:6 см
Объяснение:
1.в трапецию можно вписать окружность тогда, когда сумма оснований равна сумме боковых сторон.
Следовательно, можно найти вторую боковую сторону:
6+27=13+х
33=13+х
х=33-13
х=20
20 см - вторая боковая сторона
2. Радиус вписанной окружности в трапецию равен половине высоты трапеции.
Высота трапеции неизвестна. Её можно узнать, найдя площадь трапеции.
Формула площади трапеции по четырем сторонам :
подставляем все значения в эту формулу, учитывая, что а=6, б=27см, с=13 см, д=20 см, и находим площадь, которая равна 198 см2.
3. Ну а теперь можно приступить к нахождению высоты, зная площадь и основания.
У нахождения площади также существует формула: (а+б)/2*высоту
Подставляем все известные значения.
(6+27)/2*высоту=198
33/2*высоту=198
высота=198*2/33
Высота равна 12 см.
4. Радиус круга: 12/2 = 6 см.
Дано: S₁=2√3 см² (площадь квадрата вписанной в окружность ).
S = S(Δ) -?
S =pr = (3a/2)*r , где a длина стороны правильного треугольника , r - радиус вписанной в треугольник окружности: r = a√3/ 6 ⇒
a =6r /√3 = (2√3) *r . Значит S = (3*2√3 / 2)*r² = (3√3)*r² . С другой стороны по условию площадь квадрата вписанной в окружность S₁= ( 2 r*2r)/2 = 2r² ⇒ r² = S₁/2. * * *или по другому S₁=b² =(r√2)² =2r² * * *
Следовательно : S = (3√3)*r² = (3√3)*S₁/2=(3√3)*2√3/2 = 9 (см² ) .
ответ : 9 см² .