1) Боковая поверхность цилиндра равна 2"пи"rh, где r -радиус основания, а h - высота. Объем цилиндра равен "пи"*(r^2)*h.
2) После увеличения высоты цилиндра на 4 см она будет равна (h+4) и объем такого цилиндра будет равен "пи"*(r^2)*(h+4). Новый объем больше предыдущего на
"пи"*(r^2)*(h+4)-"пи"*(r^2)*h, что равно 36"пи". Получим уравнение:
"пи"*(r^2)*(h+4)-"пи"*(r^2)*h=36"пи"; после упрощения получим 4*r^2=36; r^2=9; r=3
3) Тогда площадь боковой пов-сти цилиндра равна 2"пи" * 3 * 5 =30"пи" (см квадр.)
2)600 * 20 = 1200 см³ (так как площадь указанного сечения = площади основания)
3)Основание цилиндра-окружность, зная площадь, найдем радиус S=πR² R=8,46см. Зная площадь осевого сечения(сечение-прямоугольник), радиус окружности является стороной сечения, найдем вторую сторону, которая одновременно и высота цилиндра. h=300/8,46=35,46см.Зная высоту и площадь основания цилиндра, найдем объем цилиндра
1. ΔBAD=ΔDCB - прямоугольные (по условию), равны по катету AB=CD и гипотенузе BD - общая сторона.
2. ΔКТМ=ΔКТN - прямоугольные (по условию), равны по двум катетам MT=TN (по условию), KT - общий катет.
3. ΔPKS=ΔRKS - прямоугольные, так как ∠PKS=∠RKS (по условию) - смежные, значит ∠PKS=∠RKS=90°. Треугольники равны по общему катету KS и острому углу ∠KPS=∠KRS (по условию).
4. ΔERF=ΔESF - прямоугольные (по условию), равны по общей гипотенузе EF и острому углу ∠REF=∠SEF (по условию).
5. ΔSPM=ΔTKM - прямоугольные (по условию), равны по катету SP=KT (по условию) и гипотенузе SM=TM (по условию).
ΔRPM=ΔRKM - прямоугольные, равны по катету РМ=КМ (из равенства ΔSPM=ΔTKM) и общей гипотенузе RM.
1) Боковая поверхность цилиндра равна 2"пи"rh, где r -радиус основания, а h - высота. Объем цилиндра равен "пи"*(r^2)*h.
2) После увеличения высоты цилиндра на 4 см она будет равна (h+4) и объем такого цилиндра будет равен "пи"*(r^2)*(h+4). Новый объем больше предыдущего на
"пи"*(r^2)*(h+4)-"пи"*(r^2)*h, что равно 36"пи". Получим уравнение:
"пи"*(r^2)*(h+4)-"пи"*(r^2)*h=36"пи"; после упрощения получим 4*r^2=36; r^2=9; r=3
3) Тогда площадь боковой пов-сти цилиндра равна 2"пи" * 3 * 5 =30"пи" (см квадр.)
2)600 * 20 = 1200 см³ (так как площадь указанного сечения = площади основания)
3)Основание цилиндра-окружность, зная площадь, найдем радиус S=πR² R=8,46см. Зная площадь осевого сечения(сечение-прямоугольник), радиус окружности является стороной сечения, найдем вторую сторону, которая одновременно и высота цилиндра. h=300/8,46=35,46см.Зная высоту и площадь основания цилиндра, найдем объем цилиндра
V=πh=225*35.46=7978.5cv³
1. ΔBAD=ΔDCB - прямоугольные (по условию), равны по катету AB=CD и гипотенузе BD - общая сторона.
2. ΔКТМ=ΔКТN - прямоугольные (по условию), равны по двум катетам MT=TN (по условию), KT - общий катет.
3. ΔPKS=ΔRKS - прямоугольные, так как ∠PKS=∠RKS (по условию) - смежные, значит ∠PKS=∠RKS=90°. Треугольники равны по общему катету KS и острому углу ∠KPS=∠KRS (по условию).
4. ΔERF=ΔESF - прямоугольные (по условию), равны по общей гипотенузе EF и острому углу ∠REF=∠SEF (по условию).
5. ΔSPM=ΔTKM - прямоугольные (по условию), равны по катету SP=KT (по условию) и гипотенузе SM=TM (по условию).
ΔRPM=ΔRKM - прямоугольные, равны по катету РМ=КМ (из равенства ΔSPM=ΔTKM) и общей гипотенузе RM.
Подробнее - на -
Объяснение: