найдите угол между касательно проведенным источником внешним по отношению к окружности если точки касания делит окружность на две дуги колёс как 1)3:15(ответ должен быть 120)2)7:11(ответ 40)3)3:7(ответ 72)
1) х угол при основании, их два; 4х угол при вершине; всего х+х+4х=6х и это 180°=> х=30
угол при вершине 4*30=120
2) (180-50)/2=130/2=65
3) в равностороннем треугольнике углы по 60°
биссектрисы их делят пополам, т.е. 30°
При пересечении биссектрис образуется треугольник, в котором 2 угла по 30°, отсюда 180°-30°*2=120°, но этот угол тупой. Острый угол является смежным с ним. Сумма смежных углов равна 180°, значит острый угол равен 180°-120°=60°
4) т.к. периметр это сумма всех сторон, а медиана, разбивая треугольник АВС на 2 треугольника(АМВ и АМС) является общей стороной и предполагает, что ВМ=СМ, то при равных периметрах третьи стороны равны.
1)120°
2)65°
3)60°
4)"="
Объяснение:
1) х угол при основании, их два; 4х угол при вершине; всего х+х+4х=6х и это 180°=> х=30
угол при вершине 4*30=120
2) (180-50)/2=130/2=65
3) в равностороннем треугольнике углы по 60°
биссектрисы их делят пополам, т.е. 30°
При пересечении биссектрис образуется треугольник, в котором 2 угла по 30°, отсюда 180°-30°*2=120°, но этот угол тупой. Острый угол является смежным с ним. Сумма смежных углов равна 180°, значит острый угол равен 180°-120°=60°
4) т.к. периметр это сумма всех сторон, а медиана, разбивая треугольник АВС на 2 треугольника(АМВ и АМС) является общей стороной и предполагает, что ВМ=СМ, то при равных периметрах третьи стороны равны.
Дано:
окружность;
хорда = 6 √ 2;
хорда стягивает дугу в 90 градусов;
Найти: длину дуги и длину окружности;
Если хорда стягивает дугу в 90 градусов, отсюда следует, что она является стороной квадрата вписанного в окружность.
Из формулы хорда = R √ 2 найдем R/
Подставим известные значения, и получим:
6 √ 2 = R √ 2;
R = 6 * √2 / √2;
Числитель и знаменатель в дроби сокращаем на корень из 6, тогда получим:
R = 6;
Теперь найдем длину дуги и длину окружности:
Длина окружности равна C= 2 * 3 , 14 * 6 = 37 , 68;
Длина дуги равна L = 37 , 68 / 4 = 9 , 42.
Объяснение: