Гипотенуза в квадрате равна сумме квадратов катетов, т.е. 25=25x, x=1. А отношение было 3x:4x, сл-но стороны 3 и 4. Если это прямоугольный треугольник, то высота делит гипотенузу на некоторые отрезки. Высота это линия из прямого угла пересекающая гипотинузу под прямым углом. Рисуем ее. Получается два смежных прямоугольных треугольника: первый - гипотенуза 4 см, один катет наша высота- назовем ее Х, второй катет - часть гипотенузы нашего самого первого треугольника, назовем его У; и второй треугольник - его гипотенуза 3 см, один катет опять наша высота Х, второй - оставшаяся часть гипотенузы исходного треугольника она будет 5-y
Составляем квадратные уравнения: x^2+y^2=9 x^2+(5-y)^2=16; x^2+25-10y+y^2=3; из первого равенства x^2+y^2=9 делаем подстановку, получаем: 9+25-10y=16; y=1,8
Подставляем в первое x^2+y^2=9 x^2= 9 - 1,8^2 x^2= 5.76 x=2.4
А отношение было 3x:4x, сл-но стороны 3 и 4.
Если это прямоугольный треугольник, то высота делит гипотенузу на некоторые отрезки.
Высота это линия из прямого угла пересекающая гипотинузу под прямым углом. Рисуем ее. Получается два смежных прямоугольных треугольника: первый - гипотенуза 4 см, один катет наша высота- назовем ее Х, второй катет - часть гипотенузы нашего самого первого треугольника, назовем его У; и второй треугольник - его гипотенуза 3 см, один катет опять наша высота Х, второй - оставшаяся часть гипотенузы исходного треугольника она будет 5-y
Составляем квадратные уравнения:
x^2+y^2=9
x^2+(5-y)^2=16; x^2+25-10y+y^2=3; из первого равенства x^2+y^2=9 делаем подстановку, получаем: 9+25-10y=16; y=1,8
Подставляем в первое x^2+y^2=9
x^2= 9 - 1,8^2
x^2= 5.76
x=2.4
Сл-но высота равна 2,4 или 24\10=12\5
4) (-2;1)
5) (х + 2) ² + (у-1) ² = 1.
Объяснение:
4)Центр має координати (1; -1).
Підставляємо замість x і у в рівняння паралельного перенесення, і тим самим знаходимо шукані координати:
x' = x-3=1-3=-2
y' = y +2=-1+2=1.
(-2;1) - шукані координати.
5) У данному колі центром є точка (1; 2). При повороті навколо початку координат (проти годинникової стрілки) точка (х; у) переходить в точку (-у; х).
Центр буде (-2; 1). [Радіус не зміниться].
Отже вийде слідуюче рівняння:
(х + 2) ² + (у-1) ² = 1 - рівняння кола.