Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
Прямая АО1 - линия пересечения плоскостей АВС1 и BCD1.
Объяснение:
Параллельные плоскости пересекаются третьей плоскостью по параллельным прямым.
Следовательно, плоскость A1B1C1D1E1F1 (верхнее основание правильной шестиугольной призмы) пересечется секущей плоскостью АВС1 по прямой С1F1, так как в правильном шестиугольнике сторона АВ параллельна стороне СF => AB параллельна С1F1.
Эта же плоскость пересечется секущей плоскостью BCD1 по прямой А1D1, так как ВС параллельна AD и параллельна A1D1.
Прямые C1F1 и A1D1 пересекаются в точке О1 (пересечение диагоналей правильного шестиугольника).
Следовательно, точка О1 - общая для плоскостей АВС1 и BCD1. Точка А также принадлежит и плоскости АВС1 и плоскости BCD1. Через две точки можно провести прямую и при том ТОЛЬКО ОДНУ.
Значит прямая АО1 является линией пересечения плоскостей АВС1 и BCD1.
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
Прямая АО1 - линия пересечения плоскостей АВС1 и BCD1.
Объяснение:
Параллельные плоскости пересекаются третьей плоскостью по параллельным прямым.
Следовательно, плоскость A1B1C1D1E1F1 (верхнее основание правильной шестиугольной призмы) пересечется секущей плоскостью АВС1 по прямой С1F1, так как в правильном шестиугольнике сторона АВ параллельна стороне СF => AB параллельна С1F1.
Эта же плоскость пересечется секущей плоскостью BCD1 по прямой А1D1, так как ВС параллельна AD и параллельна A1D1.
Прямые C1F1 и A1D1 пересекаются в точке О1 (пересечение диагоналей правильного шестиугольника).
Следовательно, точка О1 - общая для плоскостей АВС1 и BCD1. Точка А также принадлежит и плоскости АВС1 и плоскости BCD1. Через две точки можно провести прямую и при том ТОЛЬКО ОДНУ.
Значит прямая АО1 является линией пересечения плоскостей АВС1 и BCD1.