На рисунке подобные треугольники. Они подобны по второму признаку (Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.)
Из пропорциональности сторон можно легко вычислить коэффициент подобия:
9/3 = 3
Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Т.е. площадь большого треугольника в 3² = 9 раз больше площади маленького. Соответственно она равна:
1) Назовем треуг. АBC. Рассмотрим его. Трег. равнобедр. значит его бок.стороны по 13 см. Проведем высоту из вершины В( не из основания, а из верхнего угла треуг.) Высота по св-тву равнобедр. треуг. явл. медианой и биссек. Значит высота ВD поделит основание АС на равные части( 10:2=5). Рассмотрим треуг. АВD. BD- катет, значит найдем его по теореме Пифагора. ( 13-5 возведем в квадрат: 169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60 ответ:60 см2.
36 см²
Объяснение:
На рисунке подобные треугольники. Они подобны по второму признаку (Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.)
Из пропорциональности сторон можно легко вычислить коэффициент подобия:
9/3 = 3
Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Т.е. площадь большого треугольника в 3² = 9 раз больше площади маленького. Соответственно она равна:
S = 4 * 9 = 36 см²
169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60
ответ:60 см2.