Найдите высоту и площадь боковой поверхности правильной треугольной пирамиды, стороны основания которой равны 2, а объем равен корень из 3.с рисунком и полным решением,
1) знайдемо більшу сторону основи : 5²+12²=25+144=169 √=13 см , знайдемо площу основи , 1/2*5*12=30 см² , основ дві тому 2*30=60 см², шукаємо площі бічних сторін: 12*10+5*10+13*10=120+50+130=300 см²
тепер все разом: 300+60=360 см²
3) розрізали ціліндр по осі, в перерізі маємо квадрат, сторона якого є діаметром, площа квадрата за умовою є36 см², тому сторона квадрата(діаметр) буде 6 см. Тепер шукаємо площі основ і бокову поверхню циліндра. В основі циліндра є площа круга , S круг.=πД²/4=π6²/4=18πсм² основ двы , тому площа основ = 36π см², бокова поверхня циляндра є прямокутник , основа якого є довжина кола * на висоту . С=π*Д=6π а так як висота теж дорівнює діаметру, маємо бокову поверхню 36π Площа повної поверхні буде:36π+18π=54 π
Есть три отрезка диаметра, значит имеем две точки деления. Сумма первых двух отрезков относится к третьему как 3:3, значит вторая точка делит диаметр пополам, а первая точка делит радиус в отношении 2:1. Чтобы получить объём шарового слоя нужно от половины объёма шара вычесть объём шарового сегмента, определённого хордой АВ как диаметром сечения. Объём половины шара: Vп=V/2=4πR³/6=2πR³/3
Объём шарового сегмента: Vc=πh²(R-h/3), где h - высота сегмента. h=СК. СК:СО=2:1, КО=R ⇒ CK=2R/3=h. Vc=π·4R²(R-2R/9)/9=4R³((9-2)/9)/9=28R³/81.
Объём шарового слоя: Vслоя=Vп-Vc=2πR³/3-28πR³/81=26πR³/81 - это ответ.
Объяснение:
1) знайдемо більшу сторону основи : 5²+12²=25+144=169 √=13 см , знайдемо площу основи , 1/2*5*12=30 см² , основ дві тому 2*30=60 см², шукаємо площі бічних сторін: 12*10+5*10+13*10=120+50+130=300 см²
тепер все разом: 300+60=360 см²
3) розрізали ціліндр по осі, в перерізі маємо квадрат, сторона якого є діаметром, площа квадрата за умовою є36 см², тому сторона квадрата(діаметр) буде 6 см. Тепер шукаємо площі основ і бокову поверхню циліндра. В основі циліндра є площа круга , S круг.=πД²/4=π6²/4=18πсм² основ двы , тому площа основ = 36π см², бокова поверхня циляндра є прямокутник , основа якого є довжина кола * на висоту . С=π*Д=6π а так як висота теж дорівнює діаметру, маємо бокову поверхню 36π Площа повної поверхні буде:36π+18π=54 π
Чтобы получить объём шарового слоя нужно от половины объёма шара вычесть объём шарового сегмента, определённого хордой АВ как диаметром сечения.
Объём половины шара: Vп=V/2=4πR³/6=2πR³/3
Объём шарового сегмента: Vc=πh²(R-h/3), где h - высота сегмента. h=СК. СК:СО=2:1, КО=R ⇒ CK=2R/3=h.
Vc=π·4R²(R-2R/9)/9=4R³((9-2)/9)/9=28R³/81.
Объём шарового слоя: Vслоя=Vп-Vc=2πR³/3-28πR³/81=26πR³/81 - это ответ.