Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
Дано: СВ = a, ∟A = а, ∟C = 90°.
Побудувати: ∆АВС: ∟C = 90°, СВ = а, ∟A = а.
Побудова:
1) Відкладемо СВ = а.
2) Побудуємо ВК ┴ СВ.
3) Відкладемо ∟XBE = ∟A = а.
4) Побудуємо CF ┴ СВ.
5) CF i ВЕ перетинаються в т. А.
6) ∟KBA = ∟CAB = а як різносторонні при СА ‖ ВК i січній ВА.
7) ∆ВС - шуканий.
Объяснение:Дано: СВ = a, ∟A = а, ∟C = 90°.
Побудувати: ∆АВС: ∟C = 90°, СВ = а, ∟A = а.
Побудова:
1) Відкладемо СВ = а.
2) Побудуємо ВК ┴ СВ.
3) Відкладемо ∟XBE = ∟A = а.
4) Побудуємо CF ┴ СВ.
5) CF i ВЕ перетинаються в т. А.
6) ∟KBA = ∟CAB = а як різносторонні при СА ‖ ВК i січній ВА.
7) ∆ВС - шуканий.
Сторона, к которой проведена высота, равна 3+12=15 м.
Высоту нужно найти.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
h²=3*12=36
h=√36=6 (м)
Ѕ=h*a:2
S=6*15:2=45 м²
Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы:
Р=a+b+c
а=√(3*15)=3√5 м
b=√(12*15)=6√5 м
Р=15+9√5 (м)
Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.