Найдем углы параллелограмма АВСД исходя из их отношений 1:5 и из того, что одна из диагоналей ВД будет являться высотой. Есть только один вариант найти угол А=С,приняв его за Х, тогда другой угол Д=5Х*=90*-Х*+90*; Откуда 6Х=180*>>Х=30*;Значит угол между высотой ВД и стороной СД равен 60*; В таком случае, приняв за 1 сторону СД,Получим высоту ВД равную 1/2( лежащий против угла 30*), а другую сторону ВС равную \/3/2; Найдем большую диагональ АС, она будет равна (1/2)^2+(\/3/2)^2=\/(1/4+3)=\/13/2; Имеем:диагональ АС=\/13/2; и диагональ ВД=1/2; их отношение будет как \/13:1; ответ:\/13:1
Плоскости (ABC) и (FCB) пересекаются по ребру ВС. Необходимо найти прямые перпендикулярные этому ребру.
1)АС⊥ВС , по условию⇒FС⊥ВС по т. о трех перпендикулярах. Значит ∠АСF-линейный угол данного двугранного.
2) Пусть в ΔАВС-равнобедренном АК⊥ВС, тогда FК⊥ВС по т. о трех перпендикулярах. Значит ∠АКF-линейный угол данного двугранного.
3) В тупоугольном ΔАВС , высота АМ "упадет" на продолжение стороны ВС . Тогда FМ⊥ВС по т. о трех перпендикулярах. Значит ∠АМF-линейный угол данного двугранного.
Найдем углы параллелограмма АВСД исходя из их отношений 1:5 и из того, что одна из диагоналей ВД будет являться высотой. Есть только один вариант найти угол А=С,приняв его за Х, тогда другой угол Д=5Х*=90*-Х*+90*; Откуда 6Х=180*>>Х=30*;Значит угол между высотой ВД и стороной СД равен 60*; В таком случае, приняв за 1 сторону СД,Получим высоту ВД равную 1/2( лежащий против угла 30*), а другую сторону ВС равную \/3/2; Найдем большую диагональ АС, она будет равна (1/2)^2+(\/3/2)^2=\/(1/4+3)=\/13/2; Имеем:диагональ АС=\/13/2; и диагональ ВД=1/2; их отношение будет как \/13:1; ответ:\/13:1
Объяснение:
AF ⊥ (ABC) ; 1)ΔАВС прямоугольный, угол C=90° ; 2)ΔАВС равнобедренный AB=AC ; 3) ΔАВС тупоугольный, угол C>90°.
Определить линейный угол угол между (ABC) и (FCB)
Решение.
Плоскости (ABC) и (FCB) пересекаются по ребру ВС. Необходимо найти прямые перпендикулярные этому ребру.
1)АС⊥ВС , по условию⇒FС⊥ВС по т. о трех перпендикулярах. Значит ∠АСF-линейный угол данного двугранного.
2) Пусть в ΔАВС-равнобедренном АК⊥ВС, тогда FК⊥ВС по т. о трех перпендикулярах. Значит ∠АКF-линейный угол данного двугранного.
3) В тупоугольном ΔАВС , высота АМ "упадет" на продолжение стороны ВС . Тогда FМ⊥ВС по т. о трех перпендикулярах. Значит ∠АМF-линейный угол данного двугранного.