ответ:Два вектора будут коллинеарны при выполнении любого из этих условий:
Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что
a = n · b
Условия коллинеарности векторов 2. Два вектора коллинеарны, если отношения их координат равны.
Условие 2 неприменимо, если один из компонентов вектора равен нулю.
Условия коллинеарности векторов 3. Два вектора коллинеарны, если их векторное произведение равно нулевому вектору.
Объяснение:
Пусть есть два коллинеарные вектора a = {ax; ay; az} и b = {nax; nay; naz}. Найдем их векторное произведение
a × b =
i j k
ax ay az
bx by bz
= i (aybz - azby) - j (axbz - azbx) + k (axby - aybx) =
= i (aynaz - aznay) - j (axnaz - aznax) + k (axnay - aynax) = 0i + 0j + 0k = 0
ответ:Два вектора будут коллинеарны при выполнении любого из этих условий:
Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что
a = n · b
Условия коллинеарности векторов 2. Два вектора коллинеарны, если отношения их координат равны.
Условие 2 неприменимо, если один из компонентов вектора равен нулю.
Условия коллинеарности векторов 3. Два вектора коллинеарны, если их векторное произведение равно нулевому вектору.
Объяснение:
Пусть есть два коллинеарные вектора a = {ax; ay; az} и b = {nax; nay; naz}. Найдем их векторное произведение
a × b =
i j k
ax ay az
bx by bz
= i (aybz - azby) - j (axbz - azbx) + k (axby - aybx) =
= i (aynaz - aznay) - j (axnaz - aznax) + k (axnay - aynax) = 0i + 0j + 0k = 0