1.Боковая сторона разделена на 4 равные части.Через точки деления проведены прямые,параллельные основаниям. Получается, что провели три отрезка, обозначим их m1, m2, m3 Средняя линия трапеции делит её на 2 маленькие трапеции.
2. Основания трапеции равны 20 см и 50 см.
Средняя линия трапеции равна полусумме оснований m= (a+b)/2 =
252 ед².
Объяснение:
В равностороннем треугольнике стороны равны, а все углы по 60°.
ВА = ВС = АС = 18:3 = 6 ед.
Вектор (ВС - 3ВА)² - это квадрат модуля вектора |ВС - 3ВА|.
Вектор 3ВА= ВА1 = 18 ед. (равен трем коллинеарным векторам ВА, расположенным на одной прямой, конец которого будет в точке А1).
По правилу вычитания векторов имеем:
ВС - 3ВА = ВС - ВА1 = А1С.
Вектор А1С² находим по теореме косинусов:
|A1С|² = |BC|² + |BA1|² - 2|BC|·|BA1|·Cos60 =>
|A1С|² = |6|² + |18|² - 2·6·18·(1/2) = 252 ед.
Но А1С² это как раз искомый вектор.
42, 5 см, 35 см, 27,5 cм
Объяснение:
1.Боковая сторона разделена на 4 равные части.Через точки деления проведены прямые,параллельные основаниям. Получается, что провели три отрезка, обозначим их m1, m2, m3 Средняя линия трапеции делит её на 2 маленькие трапеции.
2. Основания трапеции равны 20 см и 50 см.
Средняя линия трапеции равна полусумме оснований m= (a+b)/2 =
= (20+50)/2= 35 (см) = это отрезок m2
3. Рассмотрим трапецию, с основаниями 50 см и m2
Найдём её среднюю линию m1= (50+35)/2 = 42, 5 см
4.Рассмотрим трапецию, с основаниями 20 см и m2
Найдём её среднюю линию m3 = (20+ 35)/2= 27,5 cм