АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Уравнение окружности в общем виде:
(x - x₀)² + (y - y₀)² = R²,
где (x₀; y₀) - координаты центра,
R - радиус окружности.
1. Окружность с центром О:
координаты центра (0; 0), R = 1,
уравнение окружности:
(x - 0)² + (y - 0)² = 1²
x² + y² = 1
2. Окружность с центром О₁:
координаты центра (- 3; 1), R = 2,
уравнение окружности:
(x - (- 3))² + (y - 1)² = 2²
(x + 3)² + (y - 1)² = 4
3. Окружность с центром О₂:
координаты центра (2; 3), R = 1,
уравнение окружности:
(x - 2)² + (y - 3)² = 1²
(x - 2)² + (y - 3)² = 1
4. Окружность с центром О₃:
координаты центра (3; 0), R = 1,5,
уравнение окружности:
(x - 3)² + (y - 0)² = 1,5²
(x - 3)² + y² = 2,25
5. Окружность с центром О₄:
координаты центра (0; - 3), R = 2,
уравнение окружности:
(x - 0)² + (y - (- 3))² = 2²
x² + (y + 3)² = 4
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.