Очевидно, что лучше как можно меньше совершать кругов. Но избежать их совсем не получится. Обозначим верхнюю точку D, а нижние A,B,C по часовой стрелке, начиная с самой левой. Ясно, что нам придется совершать круг внизу. Можно, конечно, пробегать по боковым граням (по их ребрам), но там получатся пробежки по одним и тем же ребрам по 2 раза, и количество таких пробежек больше одной.
Пробежка по низу ведется через боковое ребро. Допустим, это DA.
Тогда путь DA->AC->CB->BD->DA->AB->BC->CA (8). Это один из путей.
Можно путь DA->AC->CB->BA->AD->DC->CB->BD (8). Ещё один путь.
Вообще можно все представить как граф и его исследовать. Можно и просто, как я, но здесь минимальный такой путь равен 8.
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Очевидно, что лучше как можно меньше совершать кругов. Но избежать их совсем не получится. Обозначим верхнюю точку D, а нижние A,B,C по часовой стрелке, начиная с самой левой. Ясно, что нам придется совершать круг внизу. Можно, конечно, пробегать по боковым граням (по их ребрам), но там получатся пробежки по одним и тем же ребрам по 2 раза, и количество таких пробежек больше одной.
Пробежка по низу ведется через боковое ребро. Допустим, это DA.
Тогда путь DA->AC->CB->BD->DA->AB->BC->CA (8). Это один из путей.
Можно путь DA->AC->CB->BA->AD->DC->CB->BD (8). Ещё один путь.
Вообще можно все представить как граф и его исследовать. Можно и просто, как я, но здесь минимальный такой путь равен 8.
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.