В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
гуля429
гуля429
12.05.2021 21:20 •  Геометрия

Найти длину круга вписанного в ромб, диагонали которого 15 и 20

Показать ответ
Ответ:
vladikpadic
vladikpadic
28.06.2020 23:59
По сути, задача сводится к нахождению высоты прямоугольного треугольника, образованного пересечением диагоналей и стороной ромба. 
Итак, известно, что диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам, то есть у нас есть 4 равных прямоугольных треугольника с катетами 15/2 и 10. 
Найдём гипотенузу этого треугольника (то есть сторону ромба) по теореме Пифагора: c=sqrt(a^2 + b^2) = sqrt(225/4 + 100) = 25/2
Высота прямоугольного треугольника, проведённая к гипотенузе, считается по формуле: h=ab/c = 6. 
Так как окружность вписана в ромб, то радиус этой окружности перпендикулярен стороне ромба, то есть радиус равен высоте, которую мы только что нашли. 
И теперь считаем длину окружности по формуле: L=2 \pi r, r=h, значит L=2*pi * 6=12pi

ответ: 12pi
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота