Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение: