Мы знаем что это ПРЯМОУГОЛЬНАЯ трапеция, значит меньшая боковая сторона это высота, значит мы можем от конца меньшего основание провести еще одну высоту и мы получим прямоугольник треугольник
(найдем отрезок, который разделился при проведения высоты)
22-10=12 дм
Теперь мы знаем, что катеты равны 5 дм и 12 дм
Теорема Пифагора, с=sqrt(b^2+a^2) ( сори ,что написал в стиле информатики, sqrt - корень)
Два шара.
Радиусы шаров равны 8,8 см и 6,6 см.
Найти:Радиус шара, площадь поверхности которого равна сумме площадей их поверхностей - ?
Решение:Пусть R₁ - радиус одного шара (8,8 см), тогда R₂ - радиус другого шара (6,6 см).
Также R₃ - неизвестный радиус шара, площадь поверхности которого равна сумме площадей поверхностей изначально данных шаров.
S полн поверхности = 4πR²
S полн поверхности (R₁) = π(4 * 8,8²) = 309,76π см²
S полн поверхности (R₂) = π(4 * 6,6²) = 174,24π см².
Итак, по условию сказано, что есть какой-то шар, площадь поверхности которого равна сумме площадей поверхности изначально данных шаров.
⇒ S полн поверхности (R₃) = 309,76π + 174,24π = 484π см².
S полн поверхности (R₃) = 4πR² = 484π см² ⇒ R = √(484/4) = √121 = 11 см.
Итак, R₃ = 11 см.
ответ: 11 см.Тут через теоремку пифагорчика.
Мы знаем что это ПРЯМОУГОЛЬНАЯ трапеция, значит меньшая боковая сторона это высота, значит мы можем от конца меньшего основание провести еще одну высоту и мы получим прямоугольник треугольник
(найдем отрезок, который разделился при проведения высоты)
22-10=12 дм
Теперь мы знаем, что катеты равны 5 дм и 12 дм
Теорема Пифагора, с=sqrt(b^2+a^2) ( сори ,что написал в стиле информатики, sqrt - корень)
с=sqrt(25+144)
c=sqrt169
c= 13 дм
ответ: большая боковая сторона равна 13 дм