DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
сумма углов выпуклого n-угольника находится по формуле 180(n-2)
Неизвестный угол обозначим как х
тогда 180(n-2)=2017+x
x=180(n-2)-2017
но угол, естественно , будет больше 90 и меньше 180
90<180(n-2)-2017<180
2467<180n<2557
13,7<n<14,2
т.к n - целое, то n=14 Вроде бы 14-угольник.
Найдем сумму углов. Она =180(14-2)=2160
Значит, "забытый" угол = 2160-2017=143
Можно, конечно, решить чуть иначе.
Понятно, что 180(n-2)>2017
тогда n>13,2
т.е. ближайшее n=14
т.к. если проверить при n=15, то забытый угол намного больше 180, чего быть не может.