Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
a) Равные отрезки по осям - треугольник равносторонний.
b) По разности координат находим длины сторон треугольника.
А(2; 0; 5), В(3; 4; 0), С(2; 4; 0)
Квадрат Сторона
AB = √((xB-xA)²+(yB-yA)²+(zB-zA)²) = 1 16 25 42 6,480740698
BC = √((xC-xB)²+(yC-yB)²+(zC-zB)²) = 1 0 0 1 1
AC = √((xC-xA)²+(yC-yA)²+(zC-zA)²) = 0 16 25 41 6,403124237 .
По теореме косинусов находим углы:
Полупериметр р= 6,941932468 .
cos A = 0,98802352 cos B = 0,15430335 cos C = 0
A = 0,15492232 В = 1,415874007 С = 1,570796327 это радианы
8,876395081 81,12360492 90 это градусы.
Треугольник прямоугольный.
Можно было определить и по сумме квадратов сторон:
ВС^2 + AC^2 = AB^2.