Решим по формуле Герона, хотя зачем, если векторное произведение проще взять.
Итак, жирным обозначены ВЕКТОРА.
MN = (6; 8; 0) a = IMNI = 10;
MT = (6; 0; 2) b = IMTI = 2*√10 (уже весело)
TN = (0; -8; 2) c = ITNI = 2*√17 (еще веселее, может, зря я в это ввязался?)
(Хотя есть же Excel, который мигом сообщил мне ответ S^2 = 676; S = 26;
да и половина векторного произведения MNXMT/2 = (8; - 9; - 24) имеет модуль 26 :)) ну раз так, главное - не спутать корни :)))
Итак, полупериметр
p = 5 + √10 + √17;
p - a = - 5 + √10 + √17;
p - b = 5 - √10 + √17;
p - c = 5 + √10 - √17;
Перемножаем, получим S^2.. в таком порядке p(p-c)(p-b)(p-a);
(5 + √10 + √17)*(5 + √10 - √17)*(5 - √10 + √17)*(√17 - 5 + √10) =
((5 + √10)^2 - 17)*(17 - (5 - √10)^2) =
= 17*(5 + √10)^2 - 17^2 - (5 + √10)^2*(5 - √10)^2 + 17*(5 - √10)^2 =
= 17*(25 + 10)*2 - 17^2 - 15^2 = 676;
ур.
S = √676 = 26
а1) средняя линия равна (10 + 16) / 2 = 13
а2) сумма углов, прилежащих к боковой стороне трапеции равны 180°.
∠ а+ ∠ в=180°, а значит ∠ а=180°- ∠ в=180°-128°=52°
∠ с+ ∠ d=180°, а значит ∠ d=180°- ∠ c=180°-115°=65°
а3) так как угол а острый то ad> bc, тогда угол bkd = 180-akb=180-65=115. bcdk параллелограмм поэтому угол bcd=bkd=115
а4) проведем высоту из вершины в и с к основанию аd. высоты обозначим вн и см. отрезок нм=вс=5 см. т.к. трапеция равнобедренная, то ан=мd=(11-5)/2=3.
треугольник авн - прямоугольный, угол авн=30 градусов. катет, лежащий против угла 30 градусов (ан) равен половине гипотенузы, следовательно ав=3*2=6
так как ав=сd=6, то периметр трапеции равен: 5+11+6+6= 28
в1) периметр трапеции abcd равен ab+bc+be+bc+ae=32cм.
периметр треугольника abe равен ав+ве+ае. то есть разница одного и другого = 2*вс = 10. итак, периметр треугольника абе = 32 - 10 =22см
в2) рассмотрим треугольник acd - прямоугольный
угол сad=90 градусов, cda=90-60=30
cd=1/2ad=20: 2=10 см.
ab=cd, значит:
р=ad+bc+ab+cd=ad+bc+2cd
р=20+10+20= 50
ответ: 50
Решим по формуле Герона, хотя зачем, если векторное произведение проще взять.
Итак, жирным обозначены ВЕКТОРА.
MN = (6; 8; 0) a = IMNI = 10;
MT = (6; 0; 2) b = IMTI = 2*√10 (уже весело)
TN = (0; -8; 2) c = ITNI = 2*√17 (еще веселее, может, зря я в это ввязался?)
(Хотя есть же Excel, который мигом сообщил мне ответ S^2 = 676; S = 26;
да и половина векторного произведения MNXMT/2 = (8; - 9; - 24) имеет модуль 26 :)) ну раз так, главное - не спутать корни :)))
Итак, полупериметр
p = 5 + √10 + √17;
p - a = - 5 + √10 + √17;
p - b = 5 - √10 + √17;
p - c = 5 + √10 - √17;
Перемножаем, получим S^2.. в таком порядке p(p-c)(p-b)(p-a);
(5 + √10 + √17)*(5 + √10 - √17)*(5 - √10 + √17)*(√17 - 5 + √10) =
((5 + √10)^2 - 17)*(17 - (5 - √10)^2) =
= 17*(5 + √10)^2 - 17^2 - (5 + √10)^2*(5 - √10)^2 + 17*(5 - √10)^2 =
= 17*(25 + 10)*2 - 17^2 - 15^2 = 676;
ур.
S = √676 = 26
а1) средняя линия равна (10 + 16) / 2 = 13
а2) сумма углов, прилежащих к боковой стороне трапеции равны 180°.
∠ а+ ∠ в=180°, а значит ∠ а=180°- ∠ в=180°-128°=52°
∠ с+ ∠ d=180°, а значит ∠ d=180°- ∠ c=180°-115°=65°
а3) так как угол а острый то ad> bc, тогда угол bkd = 180-akb=180-65=115. bcdk параллелограмм поэтому угол bcd=bkd=115
а4) проведем высоту из вершины в и с к основанию аd. высоты обозначим вн и см. отрезок нм=вс=5 см. т.к. трапеция равнобедренная, то ан=мd=(11-5)/2=3.
треугольник авн - прямоугольный, угол авн=30 градусов. катет, лежащий против угла 30 градусов (ан) равен половине гипотенузы, следовательно ав=3*2=6
так как ав=сd=6, то периметр трапеции равен: 5+11+6+6= 28
в1) периметр трапеции abcd равен ab+bc+be+bc+ae=32cм.
периметр треугольника abe равен ав+ве+ае. то есть разница одного и другого = 2*вс = 10. итак, периметр треугольника абе = 32 - 10 =22см
в2) рассмотрим треугольник acd - прямоугольный
угол сad=90 градусов, cda=90-60=30
cd=1/2ad=20: 2=10 см.
ab=cd, значит:
р=ad+bc+ab+cd=ad+bc+2cd
р=20+10+20= 50
ответ: 50