В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
лиза2740
лиза2740
03.04.2022 08:26 •  Геометрия

Найти координаты центра окружности и радиуса : x^2-5x+y^2-(40-5)y+1=0

Показать ответ
Ответ:
Elvira2018
Elvira2018
04.08.2020 16:18
X^2 -5x + y^2 - 35y + 1 = 0;
[ x^2 - 2*(5/2)x + (5/2)^2 ] - (5/2)^2 +
+ [ y^2 - 2*(35/2)y + (35/2)^2 ] - (35/2)^2 + 1 = 0;
(x - (5/2))^2 - (25/4) + ( y - (35/2))^2 - (1225/4) + 1 = 0;
(x - 2,5)^2 + (y - 17,5)^2 = ((25+1225)/4) -1 = (1250/4) -1 = 311,5
(x - 2,5)^2 + (y - 17,5)^2 = 311,5;
формула окружности через декартовы координаты:
(x - x0)^2 + (y- y0)^2 = R^2.
где (x0; y0) - координаты центра окружности, а R это радиус окружности.
Сравнивая полученное с последней формулой находим координаты центра окружности (2,5; 17,5), и радиус окружности равен (√311,5).
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота