Чтобы найти сторону надо сделать из прямоугольника с его диагональю треугольник, получится прямоугольный треугольник. теперь 64.3 это будет катетом треугольника . нарисуем визуально такой же треугольник и с другой стороны треугольника, чтоб получился равносторонний треугольник. теперь находим высоту равностороннего треугольника это будет h=a√3 /2 , где а это гипотенуза треугольника т.е диагональ прямоугольника. получится h=64,3√3 /2 это и будет длинная сторона прямоугольника. теперь находим другую сторону , на этом же треугольнике. треугольник у нас равносторонний и поэтому сторона у нас будет поделенная на два т.е. d= 64,3/2=32.15 это будет короткая сторона прямоугольника теперь находим пеример прямоугольника p=a+b+c+d р=64,3√3 /2+ 64,3√3 /2+32,15+32,15=94,45√6
Даны координаты середин сторон треугольника АВС: M(3;-2;5, N (3,5;-1;6), K(-1,5;1;2).
Две половины сторон треугольника АВС и два стороны треугольника MNK образуют параллелограмм.
Поэтому координаты точки А симметричны точке К относительно середины отрезка MN как конец диагонали АК параллелограмма ANKM.
Аналогично вершины В и С.
Находим координаты середин отрезков:
О = (1/2)MN = ((3 + 3,5)/2=3,25; (-2-1)/2=-1,5; (5+6)/2=5,5) = (3,25; -1,5; 5,5).
Р = (1/2)NK = ((3-1,5)/2=0,75; (-2+1)/2=-0,5; (5+2)/2=3,5) = (0,75; -0,5; 3,5).
Т = (1/2)MK = (3,5-1,5)/2=1; (-1+1)/2=0; (6+2)/2=4) = (1; 0; 4).
Теперь находим симметричные точки как вершины треугольника АВС.
А = 2О - К = (8; -4; 9).
В = 2Р - M = (-1; 2; 3).
C = 2T - N = (-2; 0; 1).
теперь находим другую сторону , на этом же треугольнике. треугольник у нас равносторонний и поэтому сторона у нас будет поделенная на два т.е. d= 64,3/2=32.15 это будет короткая сторона прямоугольника
теперь находим пеример прямоугольника
p=a+b+c+d
р=64,3√3 /2+ 64,3√3 /2+32,15+32,15=94,45√6