∆АНВ ~ ∆CPE (по острому углу <A = <C в равнобедренном ∆АВС) =>
<CEP = <ABH.
<ABH = <CBH = <DBH. (ВН - высота, медиана и биссектриса).
<CDA+<ADB = 180° (смежные) =>
<CDA+<DBA = 2<CDE+2<DBH =180° => <CDE+<DBH = 90°.
<CDE= 90 - <DBH = 90 - <ABH. Но <ABH = <CEP (показано выше).
Тогда <CDE =90 - <CEP или <CEP = 90 - <CDE.
В прямоугольном треугольнике PDE
PED = 90 - <CDE =>
<CEP = <PED и треугольник СED - равнобедренный, где ЕР и высота, и медиана, и биссектриса.
Следовательно, точка Е - пересечение прямых АС, ЕР и DE, что и требовалось доказать.
6 см
Объяснение:
Так как призма прямая, ее высотой является боковое ребро.
Проведем ВK⊥AC. ВK - проекция В₁К на плоскость основания, значит
В₁К⊥АС по теореме о трех перпендикулярах, тогда
∠В₁КВ = 60° - линейный угол двугранного угла между плоскостями (АВ₁С) и (АВС).
Из прямоугольного треугольника АВС по теореме Пифагора найдем АС:
АС = √(АВ² + ВС²) = √(48 + 16) = √64 = 8 см
Найдем ВК - высоту прямоугольного треугольника АВС :
Sabc = 1/2 AC · BK = 1/2 AB · BC
BK = AB ·BC / AC = 4√3 · 4 / 8 = 2√3 см
ΔВВ₁К: tg∠B₁KB = BB₁ / BK
BB₁ = BK · tg60° = 2√3 · √3 = 6 см
∆АНВ ~ ∆CPE (по острому углу <A = <C в равнобедренном ∆АВС) =>
<CEP = <ABH.
<ABH = <CBH = <DBH. (ВН - высота, медиана и биссектриса).
<CDA+<ADB = 180° (смежные) =>
<CDA+<DBA = 2<CDE+2<DBH =180° => <CDE+<DBH = 90°.
<CDE= 90 - <DBH = 90 - <ABH. Но <ABH = <CEP (показано выше).
Тогда <CDE =90 - <CEP или <CEP = 90 - <CDE.
В прямоугольном треугольнике PDE
PED = 90 - <CDE =>
<CEP = <PED и треугольник СED - равнобедренный, где ЕР и высота, и медиана, и биссектриса.
Следовательно, точка Е - пересечение прямых АС, ЕР и DE, что и требовалось доказать.
6 см
Объяснение:
Так как призма прямая, ее высотой является боковое ребро.
Проведем ВK⊥AC. ВK - проекция В₁К на плоскость основания, значит
В₁К⊥АС по теореме о трех перпендикулярах, тогда
∠В₁КВ = 60° - линейный угол двугранного угла между плоскостями (АВ₁С) и (АВС).
Из прямоугольного треугольника АВС по теореме Пифагора найдем АС:
АС = √(АВ² + ВС²) = √(48 + 16) = √64 = 8 см
Найдем ВК - высоту прямоугольного треугольника АВС :
Sabc = 1/2 AC · BK = 1/2 AB · BC
BK = AB ·BC / AC = 4√3 · 4 / 8 = 2√3 см
ΔВВ₁К: tg∠B₁KB = BB₁ / BK
BB₁ = BK · tg60° = 2√3 · √3 = 6 см